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Chapter 1. Introduction
1. About JModelica.org

JModelica.org is an extensible Modelica-based open source platform for optimization, simulation and analysis of
complex dynamic systems. The main objective of the project isto create an industrialy viable open source plat-
form for optimization of Modelicamodels, while offering aflexible platform serving asavirtual lab for algorithm
development and research. JModelica.org is intended to provide a platform for technology transfer where indus-
trially relevant problems can inspire new research and where state of the art algorithms can be propagated form
academiainto industrial use. IModelica.org is aresult of research at the Department of Automatic Control, Lund
University, [Jak2007] and is now maintained and developed by Modelon AB in collaboration with academia.

2. Mission Statement

To offer a community-based, free, open source, accessible, user and application-oriented Modelica environment
for optimization and simul ation of complex dynamic systems, built on well-recognized technology and supporting
major platforms.

3. Technology

JModelica.org relies on the modeling language Modelica. Modelica targets modeling of complex heterogeneous
physical systems, and is becoming a de facto standard for dynamic model development and exchange. There
are numerous model libraries for Modelica, both free and commercial, including the freely available Modelica
Standard Library (MSL).

A unique feature of IModelica.org is the support for the extension Optimica. Optimica enables users to conve-
niently formulate optimization problems based on Modelica models using simple but powerful constructs for en-
coding of optimization interval, cost function and constraints.

The IModelica.org compilers are developed in the compiler construction framework JastAdd. JastAdd is based on
anumber of different concepts, including object-orientation, aspect-orientation and reference attributed grammars.
Compilers developed in JastAdd are specified in terms of declarative attributes and equations which together
forms an executable specification of the language semantics. In addition, JastAdd targets extensible compiler
development which makes it easy to experiment with language extensions.

For user interaction JIModelica.org relies on the Python language. Python offers an interactive environment suit-
ablefor scripting, development of custom applications and prototype algorithm integration. The Python packages
Numpy and Scipy provide support for numerical computation, including matrix and vector operations, basic linear
algebraand plotting. The IModelica.org compilers aswell asthe model executables/dlIsintegrate seamlessly with
Python and Numpy.

JModelica.org offers strong support for the Functional Mock-up Interface (FMI) standard. FMI specifies aformat
for exchange of compiled dynamic modelsand it is supported by alarge number of modeling and simulation tools,
including established Modelica tools such as Dymola, OpenModelica, and SimulationX. FMI defines a model
execution interface consisting of aset of C-function signaturesfor handling the communi cation between the model
and asimulation environment. Models are presented as ODEs with time, state and step events. FMI also specifies
that all information related to a model, except the equations, should be stored in an XML formated text-file. The
format is specified in the standard and specifically contains information about the variables, names, identifiers,
types and start attributes. A model is distributed in a zip-file with the extension ".fmu'’, these zip-files containing
the models are called FMUs (Functional Mock-up Units). FMI version 1.0 specifies two types of FMUSs, either
Model Exchange or Co-Simulation. The difference between them isthat in a Co-Simulation FMU, the integrator
for solving the systemis contained in the model whilein an Model Exchange FMU, an external integrator is needed
to solvethe system. The IM odelica.org compiler supports export of FMUs and FM Us can beimported into Python
using the Python packages included in the platform.
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4. Architecture

Figure 1.1. JIModelica.org platform ar chitecture.
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The IModelica.org platform consists of a number of different parts:

The compiler front-ends (one for Modelicaand one for M odelica/Optimica) transforms Modelicaand Optimica
codeinto aflat model representation. The compilersalso check the correctness of model descriptionsand reports
errors.

The compiler back-ends generates C code and XML code for Modelica and Optimica. The C code contains
the model equations, cost functions and constraints whereas the XML code contains model meta data such as
variable names and parameter values. Export of Functional Mock-up Units (FMUS) is supported. Thereisalso
the option to export flattened M odelica models, including equations, in XML format.

The JModelica.org runtime library is written in C and contains supporting functions needed to compile the
generated model C code. Also, the runtime library contains an integration with CppAD, atool for computation
of high accuracy derivatives by means of automatic differentiation to provide derivatives for optimization al-
gorithm. The runtime system also contains the functions provided in the FMI1 API.

Currently, IModelica.org features four different algorithms for solving dynamic optimization problems. There
arethreedifferent algorithmsbased on direct collocation, which rely on the solver | POPT for obtaining asolution
to the resulting NLP. The default algorithm is encoded in C and relies on CppAD for computing the NLP
derivatives. The other two algorithms are developed in Python and rely on CasADi for computing derivatives.
Thereis also a derivative free optimization algorithm for model calibration based on measurement data that is
applicableto FMUs.

JModelica.org uses Python for scripting. For this purpose, IModelica.org provides anumber of different Python
packages. The Assimulo package provides integration with state of the art DAE and ODE solvers (including
the SUNDIALS suite), PyFMI provides FMU import, whereas PyModelica interacts with the IModelica.org
compilers. Finaly, PyJMI contains drivers for the optimization algorithms. All packages are available as
part of JModelica.org, and Assimulo and PyFMI are also available as stand alone Python packages from
www.assimulo.org and www.pyfmi.org.

5. Extensibility

The IModelica.org platform is extensible in a number of different ways:

TheJModelica.org platform supports export and import of FMUs, which are compliant with the FM| standard. In
addition, IModelica.org features a C interface for efficient evaluation of model equations, the cost function and
the constraints: the IModelicaModel Interface (IM1). IMI also contains functions for evaluation of derivatives
and sparsity and is intended to offer a convenient interface for integration of numerical algorithms. FMI isthe
default format for simulation, whereas JMI is the default interface for optimization.
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* In addition to the FMI and JMI interfaces, IModelica.org supports export of flat Modelica models in XML
format. This format is based on FMI, and is suitable for integration with symbolic algorithms that can exploit
access to the equations in symbolic form.

 JastAdd produces compilers encoded in pure Java. Asaresult, the IModelica.org compilersare easily embedded
in other applications aspiring to support Modelica and Optimica. In particular, a Java API for accessing the flat
model representation and an extensible template-based code generation framework is offered.

» The JModelica.org compilers are developed using the compiler construction framework JastAdd. JastAdd fea-
tures extensible compiler construction, both at the language level and at the implementation level. Thisfeature
is explored in IModelica.org where the Optimica compiler isimplemented as a fully modular extension of the

core Modelicacompiler. The IModelica.org platform is asuitable choice for experimental language design and
research.

An overview of the IModelica.org platform is given [Jak2010]




Chapter 2. Installation
1. Supported platforms

JModelica.org is supported on Linux and Windows (Vista, 7) with 32-bit or 64-bit architectures.

2. Installation on Windows

Pre-built binary distributions for Windows are available in the Download section of www.jmodelica.org.

The Windows installer contains a binary distribution of IModelica.org, bundled with all required third-party soft-
ware components. A list of thethird-party dependencies can befoundin Section 2.1, “Dependencies’. Theinstaller
sets up a pre-configured complete environment with convenient start menu shortcuts. Installation instructions are
found in Section 2.2, “Installation”.

2.1. Dependencies

As of IModelica.org version 1.9, all dependencies are bundled in the installer. They are listed below, each with
version number (where applicable) and link to corresponding web site.

» Applications
» Javal.7 (JRE)

e MinGW (gcc 4.7.2)

Python 2.7

» Libraries
e |popt 3.10.3
e SuperLU 4.1
e Beaver 0.9.6.1
e CppAD
e eXpat 2.1.0
e Minizip
« MSL (Modelica Standard Library)
« SUNDIALS24.0
* Zlib1.2.6
e CasADi

e Python packages
e Cython0.18
* Distribute 0.6.35
« IPython 0.13.1

« JCC1.18
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« JPype0.5.4.2

e Ixml 3.1.0

e matplotlib 1.2.0
e nosel2l

« NumPy 1.6.2

e Pyreadline1.7.1
* SciPy 0.11.0

« wxPython 2.8

2.2. Installation

Follow these step-by-step instructions to install IModelica.org using the Windows binary distribution.

1. Download a IModelica.org Windows binary installer and save the executable file somewhere on your com-
puter.

2. Run thefile by double-clicking and selecting "Run" if prompted with a security warning. This will launch
an installer which should be self-explanatory.

* Inthe Choose Components window, select which of the bundled Python packages that should be installed.
Make sure that any package not already installed on your computer is checked.

Figure 2.1. Selecting Python packagesin the Choose components window.

/. IModelica.org Setup l — &J
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Matplotiib 1.2,
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< 1 3
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< Back H Mext > ]‘ Cancel

2.3. Verifying the installation

Test theinstallation by starting al Python or pylab shell from the IModelica.org start menu and run afew examples.
Starting the Python session from the Windows start menu will set all the environment variables required to run
the IModelica.org Python interface.

# lnmport and run the VDP_simexanple and plot results
from pyjm.exanples inport VDP_sim
VDP_si m run_deno()

# lnmport and run the CSTR exanple and plot results
from pyjm . exanpl es i nport cstr
cstr.run_deno()

# Inport and run the CSTR exanpl e using CasADi and plot results
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from pyj m . exanpl es inport cstr_casad
cstr_casadi . run_denp()

2.4. Compilation from sources

For compiling JM odelica.org from sources on Windows there is a Software Devel opment Kit (SDK) available for
download. The SDK is abundle of tools used to build IModelica.org from source code on Windows, please see
the SDK User's guide, which can be reached from the download site, for more information.

3. Installation on Linux systems

This section describes a procedure for compiling JModelica.org from sources on Linux. The instructions have
been verified to work on Ubuntu Linux release 12.04, 64bit.

3.1. Prerequisites

3.1.1. Installing pre-compiled packages

It is convenient to use a package management system, if available, of the Linux distribution to install the prereg-
uisites. On Ubuntu systems, the apt-get command line program may be used:

sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y
sudo apt-get -y

nstall g++

nstall subversion
nstall gfortran
nstal | ipython
nstal | crmake

nstall sw g

nstal | ant

nstal | openj dk- 6-j dk
nstal |l python-dev
nstal | python- nunpy
nstal |l python-scipy
nstall python-matplotlib
nstall cython

nstal |l python-Ixm
nstall python-nose
nstal | python-jpype
nstall zliblg-dev
nstall |ibboost-dev

On Ubuntu 12.04, the bundled jcc version istoo old. A new enough version can be installed using pip:

sudo apt-get -y install python-pip
sudo pip install jcc

The following versions of each package have been tested and verified to work. Please note that in some cases,
aminimum version is required.

Table 2.1. Package versionsfor Ubuntu

Package Version Note
g++ 4.6.3 Tested version
subver si on 1.6.17 Tested version
gfortran 4.6.3 Tested version
i pyt hon 0.12.1 Tested version
cnake 2.8.6 Minimum version
swig 2.0.4 Tested version
ant 1.8.2 Tested version
pyt hon- dev 2.7.3 Tested version



http://www.jmodelica.org/sdk

Installation

Package Version Note
pyt hon- nunpy 1.6.1 Tested version
pyt hon- sci py 0.9.0 Tested version
pyt hon-mat pl ot li b 1.1.1 Tested version
cyt hon 0.15 Minimum version
pyt hon- 1 xm 2.3.2 Tested version
pyt hon- nose 1.1.2 Tested version
pyt hon-j pype 0.5.4.2 Tested version
zliblg-dev 1:1.234 Tested version
libboost-dev 1.48.0.2 Tested version
jcc 2.16 Minimum version

3.1.2. Compiling Ipopt

While Ipopt is available as a pre-compiled package for Ubuntu, it is recommended to build Ipopt from sources.
The Ipopt packages provided for Ubuntu have had flaws (including the version provided for Ubuntu 12.04) that
prevented usage with IModelica.org. Also, compiling Ipopt from sourcesisrequired when using the linear solvers
MAZ27 or MA57 from the HSL library, since these are not available as open source software.

First, download the Ipopt sources from https://projects.coin-or.org/l popt and unpack the content:

tar xvf |popt-3.10.2.tgz

Then, retrieve the third party dependencies:

cd | popt-3.10.2/ ThirdParty/Bl as
./ get.Bl as

cd ../Lapack

./ get . Lapack

cd ../ Mnps

./ get . Munps

cd ../ Metis

./l get.Metis

cd ../../

If you have access to the HSL codes MAS7 or MA27, copy their sources into the directory Thi rdParty/ HSL. In
the next step, configure and compile Ipopt:

nkdir build

cd build

../lconfigure --prefix=/honme/ <user_name>/<i popt _i nstal | ati on_| ocati on>
make install

where<user _name>and<i popt _i nstal | ati on_| ocat i on> arereplaced by the user directory and theinstallation
directory of choice for Ipopt.

3.1.3. Installing JModelica.org with WORHP (optional)

As an dternative to IPOPT for optimization, the CasADi framework in JModelica.org also has support for
the solver WORHP. Note that WORHP is closed source, but offers free personal academic licenses. To
compile JIModelica.org with support for WORHP, first obtain the WORHP binaries and a license file from
http://www.worhp.de. Set the environment variables $WOoRHP to your directory containing the binaries and
$WORHP_LI CENSE_FI LE to your licensefile.

Normally, this would be sufficient, but for now the following additional measures are needed. Find the follow-
ing six lines in $JMODELI CA_SRC/ Thi r dPar t y/ CasADi / CasADi / i nt er f ace/ wor hp/ wor hp_i nt er nal . cpp and
remove them:

addOpt i on(" Cut Lengt h", OT_REAL, wor hp_p_. Cut Lengt h, "Scal i ng factor for Cut recovery strategy");
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addOpt i on( " Ma57Pi vot Thresh", OT_REAL, wor hp_p_. Ma57Pi vot Thr esh, "Pi voti ng tol erance for MA57 = CNTL(1)");
if (hasSet Option("CutLength")) worhp_p_.CutlLength = get Option("CutLength");

if (hasSet Option("Ma57Pi vot Thresh")) worhp_p_. Ma57Pi vot Thresh = get Opti on(" Ma57Pi vot Thresh") ;

set Opti on(" Cut Lengt h", wor hp_p_. Cut Lengt h) ;

set Opti on(" Ma57Pi vot Thresh", wor hp_p_. Ma57Pi vot Thr esh) ;

Find the line

opti on(W TH_WORHP " Conpi | e the WORHP i nterface" OFF)

in $JMODELI CA_SRC/ Thi rdParty/ CasADi / CasADi / CMakelLi st s. t xt and change OFF to ON.

3.2. Compiling

Make sure that all prerequisites are installed before compiling the IModelica.org platform. First, check out the
JModelica.org sources:

svn co https://svn.jnodelica.org/trunk JMdelica.org

Then configure and build IModelica.org:

cd JMWodelica.org

nkdir build

cd build

../lconfigure --prefix=/honme/<user_nane>/<j nodel i ca_i nstall | ocation> \
--w t h-i popt =/ horme/ <user _nane>/ <i popt _i nstal | _| ocati on>

make install

make casadi _interface

where <user _name> and <j nmodel i ca_i nstal | ati on_| ocati on> are replaced by the user directory and the in-
stallation directory of choice for IModelica.org.

3.3. Testing JModelica.org

In order to verify that JModelica.org has been installed correctly, start an IPython shell using the command/ horre/
<user _nane>/ <j nodel i ca_i nstal | _l ocati on>/ bi n/j m_i pyt hon and run afew examples:

# Inport and run the VDP_si mexanple and plot results
from pyj m .exanpl es inport VDP_sim
VDP_si m run_deno()

# Inport and run the CSTR exanple and plot results
from pyj m . exanpl es inport cstr
cstr.run_deno()

# Inport and run the CSTR exanpl e using CasADi and plot results
from pyj m . exanpl es i nport cstr_casadi
cstr_casadi . run_denp()




Chapter 3. Getting started

This chapter isintended to give a brief introduction to using the IM odelica.org Python packages and will therefore
not go into any details. Pleaserefer to the other chapters of thismanual for moreinformation on each specific topic.

1. The JModelica.org Python packages

The IModelica.org Python interface enabl es users to use Python scripting to interact with Modelicaand Optimica
models. The interface consists of three packages:

» PyModelica Interface to the compilers. Compile Modelica and Optimica code into model units, FMUs. See
Chapter 4, Working with Models for more information.

* PyFMI Work with models that have been compiled into FMUs (Functional Mock-up Units), perform simula-
tions, parameter manipulation, plot results etc. See Chapter 5, Smulation of FMUs for more information.

* PyJMI Work with models that are represented in symbolic form based no the automatic differentiation tool
CasADi. This package is mainly used for solving optimization problems. See Chapter 6, Optimization for more
information.

2. Starting a Python session

Starting a Python session differs somewhat depending on your operating system.

2.1. Windows

If you are on Windows, there are three different Python shells available under the IModelica.org start menu.
e Python Norma command shell started with Python.

» |Python Interactive shell for Python with, for example, code highlighting and tab completion.

» pylab IPython shell which also loads the numeric computation environment Pyl ab.

It is recommended to use either the IPython or pylab shell.

2.2. Linux

To start the IPython shell with pylab on Linux open aterminal and enter the command:

> $JMODELI CA_HOMVE/ bi n/j m_i pyt hon. sh - pyl ab

3. Running an example

The Python packages pyf ni and pyj i each contain afolder called exanpl es in which there are severa Python
example scripts. The scripts demonstrate compilation, loading and simulation or optimization of models. The
corresponding model files are located in the subdirectory fi | es. The following code demonstrates how to run
such an example. First a Python session must be started, see Section 2, “ Starting a Python session” above. The
example scripts are preferably run in the pylab Python shell.

The following code will run the RLC example and plot some results.

# Import the RLC exanple
from pyj m . exanpl es inport RLC

# Run the RLC exanple and plot results
RLC. run_deno()
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Open RLC. py in atext editor and look at the Python code to see what happens when the script isrun.

4. Checking your installation

The IModelica.org Python packages require some third-party Python packages in order to run. Use the function
<package>. check_packages() , where <package> is either pynodel i ca, pyfmi or pyj i, to list which Python
packagesthat are found on your computer. Missing or having the wrong version of a package can be asource of er-
rors. Therefore it can be useful to run <package>. check_packages() after installation or when trouble-shooting.

i mport pyjm
pyj m . check_packages()

Perform ng pynodel i ca/ pyj m package check

Platform..................... Wi n32
Python version:............... 2.7.3
pynodel i ca/ pyj mi version:..... 1.12

Dependenci es:

Package Ver si on
assimulo...................... -
casadi . ... 1.7.0
Cython........................ 0.18
JRYPE: - v et -

Ixm . 3.1.0
matplotlib.................... 1.2.0
NOSE. . . .ottt 1.2.1
NUIPY. & o e e e e e e e e e e e e 1.6.2
SCIPY. « i 0.11.0
wxPython...................... 2.8.12.1
pyreadline.................... 1.7.1
setuptools.................... 0.6

5. Redefining the JModelica.org environment

When importing pyj ni or pynodel i ca in Python, the script st ar t up. py is run which sets the environment used
by IModelica.org for the current Python session. For example, the environment variable JMODELI CA_HOVE points
at the IModelica.org installation directory and | POPT_HOME points at the |popt installation directory. One or more
of these environment variables set in st ar t up. py can be overridden by auser defined script: user _st art up. py.

The script st art up. py looksfor user _st art up. py in the folder
* $USERPROFI LE/ . j model i ca. or g/ (Windows)
* $HOVE/ . j nodel i ca. org/ (Unix)

If the script user _st art up. py is not found, the default environment variables will be used.

5.1. Example redefining IPOPT_HOME

The following step-by-step procedure will show how to redefine the IModelicaorg environment variable
| POPT_HOVE:

1. Gotothefolder $USERPROFI LE (Windows) or $HOVE (Linux). To find out where $USERPROFI LE Or $HOVE points
to, open a Python shell and type:

i mport os
0s. envi ron[ ' USERPROFI LE' ] /1l W ndows
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0s. environ[ ' HOWE' ] /'l Li nux
2. Create afolder and nameit . j nodel i ca. or g (or openitif it already exists)
3. Inthisfolder, create atext file and nameit user _start up. py.

4. Openthefile and type
environ[' | POPT_HOVE' ] ='<new path to | popt honme>'

5. Save and close.

6. Check your changes by opening a Python shell, import pyj nmi and check thel POPT_HQVE environment variable:

i mport pyjm
pyj m . environ[' | POPT_HOWE' ]

6. The JModelica.org user forum

Please use the IModelica.org forum for any questions related to JModelica.org or the Modelica language. You
can search in old threads to see if someone has asked your question before or start a new thread if you are a
registered user.

11
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Chapter 4. Working with Models

1. Introduction to models

Modelica and Optimica models can be compiled and loaded as model objects using the IModelica.org Python
interface. These model objects can be used for both simulation and optimization purposes. This chapter will cover
how to compile Modelica and Optimicamodels, set compiler options, load the compiled model in a Python model
object and use the model object to perform model manipulations such as setting and getting parameters.

1.1. The different model objects in JModelica.org

Thereareseveral different kinds of model objectsthat can be created with IModelica.org: FMUModel ( ME/ CS) ( 1/ 2)
and Opt i mi zat i onProbl em The FMUMbdel ( ME/ CS) ( 1/ 2) is created by loading an FMU (Functional Mock-up
Unit), which is a compressed file compliant with the FMI (Functional Mock-up Interface) standard. The opt i -
mi zat i onProbl emis created by transferring an optimization problem into the CasADi-based optimization tool
chain.

FMUs are created by compiling Modelica models with IModelica.org, or any other tool supporting FMU export.
JModelica.org supports both export and import of FMUs for Model Exchange (FMU-ME) and FMUs for Co-
Simulation (FMU-CS), version 1.0 and 2.0. Generated FMUs can be loaded in an FMUMbdel ( ME/ CS) 1 object in
Python and then be used for simulation purposes. Optimica models can not be compiled into FMUs.

Opt i mi zat i onPr obl emobjects for CasADi optimization do not currently have a corresponding file format, but
aretransferred directly from the IModelica.org compiler, based on Modelicaand Optimicamodels. They containa
symbolic representation of the optimization problem, which is used with the automatic differentiation tool CasADi
for optimization purposes. Read more about CasADi and how a Opt i i zat i onPr obl emobject can be used for
optimization in Section 5, “Dynamic optimization of DAES using direct collocation with CasADi” in Chapter 6,
Optimization.

2. Compilation

This section brings up how to compile a model to an FMU-ME / FMU-CS. Compiling amodel to an FMU-ME /
FMU-CSwill be demonstrated in Section 2.1, “ Simple FMU-ME compilation example’ and Section 2.2, “Simple
FMU-CS compilation example”’ respectively.

For more advanced usage of the compiler functions, there are compiler options and arguments which can be
modified. These will be explained in Section 2.4, “Compiler settings’.

Section 2.6, “Compilation in more detail”, will go through some parts of the compilation process and how to
perform these steps one by one.

2.1. Simple FMU-ME compilation example

The following steps compile amodel to an FMU-ME version 1.0:

1. Import the IModelica.org compiler function conpi | e_f nu from the package pynodel i ca.
2. Specify the model and model file.

3. Perform the compilation.

Thisis demonstrated in the following code example:

# Import the conpiler function
from pynodel i ca i nport conpile_fnu

# Specify Mddelica nmbdel and nodel file (.m or .nop)
nodel _nanme = ' nyPackage. myMbdel
mo_file = 'nyModel Fil e. no'

12
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# Conpile the nbdel and save the return argunent, which is the file nane of the FMJ
nmy_frmu = conpil e_frmu(nodel _nanme, nmo_file)

Thereisacompiler argument t ar get that controls whether the model will be exported as an FMU-ME or FMU-
CS. The default is to compile an FMU-ME, so t ar get does not need to be set in this example. The compiler
argument ver si on specifies if the model should be exported as an FMU 1.0 or 2.0. As the default is to compile
an FMU 1.0, ver si on does not need to be set either in this example. To compile an FMU 2.0, ver si on should
besetto' 2.0'.

Once compilation has completed successfully, an FMU-ME 1.0 will have been created on the file system. The
FMU isessentially acompressed file archive containing the files created during compilation that are needed when
instantiating a model object. Return argument for conpi | e_f mu isthe full file path of the FMU that has just been
created, thiswill be useful later when we want to create model objects. More about the FMU and |oading models
can be found in Section 3, “Loading models’.

In the above example, the model is compiled using default arguments and compiler options - the only arguments
set are the model class and file name. However, conpi | e_f mu has several other named arguments which can
be modified. The different arguments, their default values and interpretation will be explained in Section 2.4,
“Compiler settings’.

2.2. Simple FMU-CS compilation example

The following steps compiles amodel to an FMU-CS version 1.0:

1.  Import the IModelica.org compiler function conpi | e_f mu from the package pynodel i ca.
2. Specify the model and mode file.

3. Settheargumenttarget = 'cs'

4. Perform the compilation.

Thisis demonstrated in the following code example:

# |l nmport the conpiler function
from pynodel i ca i nport conpile_fnu

# Specify Mdelica nmodel and nodel file (.nmo or .nop)
nmodel _name = ' myPackage. nyModel
mo_file = 'nyMdel File.no'

# Conpi |l e the npdel and save the return argunent, which is the file nane of the FMJ
my_fmu = conpile_frmu(nodel _nane, no_file, target='cs")

In a Co-Simulation FMU, the integrator for solving the system is contained in the model. With an FMU-CS
exported with IModelica.org, two different solvers are supported: CVode and Explicit Euler.

2.3. Compiling from libraries

The model to be compiled might not bein astandalone. no file, but rather part of alibrary consisting of adirectory
structure containing several Modelicafiles. In this case, the file within the library that contains the model should
not be given on the command line. Instead, the entire library should to added to thelist of librariesthat the compiler
searches for classes in. This can be done in several ways (here library directory refers to the top directory of the
library, which should have the same name as the top package in the library):

 Adding the directory containing the library directory to the environment variable MODELI CAPATH. The compiler
will searchfor classesinall librariesfound inany onthe directoriesin MODELI CAPATH. Inthiscasethef i | e_nane
argument of the compilation function can be omitted, assuming no additional Modelicafiles are needed.

e Settingthe' extra_l i b_dirs' compiler optionto the pathto thedirectory containing thelibrary directory. This
isequivalent to adding it to the MODELI CAPATH, but only for that compilation.

 Giving the path to the library directory in the fi | e_name argument of the compilation function. This allows
adding a specific library to the search list (as opposed to adding all librariesin a specific directory).
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By default, the script starting a IModelica.org Python shell setsthe MODELI CAPATH to the directory containing the
version of the Modelica Standard Library (MSL) that isincluded in the installation. Thus, all classesin the MSL
are available without any need to specify its location.

The Python code example below demonstrates these methods:

# Import the conpiler function
from pynodel i ca i nport conpil e_fnu

# Conpil e an exanpl e nodel fromthe MSL
frmul = conpil e_fnu(' Mbdel i ca. Mechani cs. Rot ati onal . Exanpl es. First')

# Conpile a nodel fromthe library M/Library, located in C\MLibs
frmu2 = conpile_fru(' M/Li brary. M\Model ', conpiler_options = {"extra_lib_dirs':"'C/MLibs'})

# The sane as the last command, if no other libraries in C\M/Libs are needed
fmu3 = conpile_frmu(' M/Li brary. M\Model ', ' C./ M/Li bs/ MyLi brary')

2.4. Compiler settings

The compiler function arguments can be listed with the interactive help in Python. The arguments are explained
in the corresponding Python docstring which is visualized with the interactive help. This is demonstrated for
conpi | e_f mu below. The docstring for any other Python function for can be displayed in the same way.

2.4.1. compile_fmu arguments

The conpi | e_f mu arguments can be listed with the interactive help.

# Display the docstring for conpile_frmu with the Python command ' hel p'
from pynodel i ca i nport conpile_fnu

hel p(conpi | e_f mu)

Hel p on function conpile_fmu in nmodul e pynodel i ca. conpiler:

conpi l e_fmu(cl ass_nane, file_name=[], conpiler="auto', target='ne', version='1.0",
conpi | er _options={}, conpile_to='"."', conpiler_log_|evel = warning',
separ at e_process=True, jvmargs='")

Conpi |l e a Modelica nodel to an FMJ.

A nodel class nanme must be passed, all other argunents have default val ues.
The different scenarios are:

* Only class_nanme is passed:
- Class is assuned to be in MODELI CAPATH.

* class_nane and file_nane is passed:

- file_name can be a single path as a string or a list of paths
(strings). The paths can be file or library paths.

- Default conpiler setting is 'auto’ which means that the appropriate
conpiler will be selected based on nodel file ending, i.e.
Mbdel i caConpiler if a .no file and Optim caConpiler if a .mop file is
found in file_nanme I|ist.

Library directories can be added to MODELI CAPATH by listing themin a
special conpiler option "extra_lib_ dirs', for exanple:

conpi l er _options =
{"extra lib_ dirs':["'c:\MLibs1l',6'c:\MLibs2']}

O her options for the conpiler should also be listed in the conpiler_options
dict.

The conpiler target is 'me' by default which neans that the shared
file contains the FM for Mdel Exchange APlI. Setting this paraneter to
‘cs' will generate an FMJ containing the FM for Co-Sinmul ation API.

Par anet ers: :

cl ass_nane --
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The nane of the nodel class.

file_name --
A path (string) or paths (list of strings) to nodel files and/or
l'ibraries.
Default: Enpty list.

conpiler --
The conpiler used to conpile the nbdel. The different options are:
- '"auto': the conpiler is selected automatically depending on
file ending
- 'nmodelica': the MdelicaConpiler is used
- 'optimca': the OptimicaConpiler is used
Defaul t: ' auto'

target --
Conpi |l er target. Possible values are 'ne', 'cs' or 'ne+cs'.
Default: 'nme'

version --
The FM version. Valid options are '1.0' and '2.0'.
Default: '1.0'

conpi |l er_options --
Options for the conpiler.
Default: Enpty dict.

conpile to --
Specify target file or directory. If file, any internediate directories
will be created if they don't exist. If directory, the path gi ven nust
exi st .
Default: Current directory.

conpi l er _| og_| evel --
Set the logging for the conpiler. Takes a comma separated |list with
|l og outputs. Log outputs start with a flag :'"warning'/'w,
"error'/'e'", "info'/'i' or 'debug'/'d' . The log can be witten to file
by appended flag with a colon and file nane.
Defaul t: 'warning'

separ at e_process --
Run the conpilation of the nbdel in a separate process.
Checks the environment variables (in this order):
1. SEPARATE_PROCESS JVM
2. JAVA _HOVE
to locate the Java installation to use.
For exanpl e (on Wndows) this could be:
SEPARATE_PROCESS JVM = C:\ Program Fi | es\ Java\j dk1. 6. 0_37
Defaul t: True

jvmargs --
String of arguments to be passed to the JVM when conpiling in a
separate process.
Default: Enpty string

Returns::

A conpilation result, represents the nane of the FMJ which has been
created and a |list of warnings that was raised.

2.4.2. Compiler options

Compiler options can be modified using the conpi | e_f mu argument conpi | er _opti ons. Thisis shown in the
example below.

# Conmpile with the conpiler option 'enable_variable_scaling set to True

# Import the conpiler function
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from pynodel i ca i nport conpile_fnu

# Specify nodel and nodel file
nodel _nane = ' nyPackage. nyMbdel '
mo_file = 'nyModel Fil e. no'

# Conpil e
nmy_frmu = conpile_frmu(nodel _nanme, no_file, conpiler_options={"enabl e_variabl e_scaling": True})

There are four types of options: stri ng, real , i nteger and bool ean. The complete list of options can be found
in Appendix A, Compiler options.

2.5. Compiling in a separate process

In IModelica.org, the compilers (Model i caConpi | er and Opt i mi caConpi | er) arewritten in Java. When compil-
ing a model from the Python interface, with e.g. conpi | e_f nu, the default behavior is to compile the model in
a separate process. This means that a specific JRE (Java Runtime Environment) is used for the compilation. For
those on a 64 bit Windows thisis can be very useful as the default JRE used with JPype is 32 bit. Also, in most
cases, the VM (Java Virtual Machine) can be given a larger heap space (especially when using a 64 bit JRE
instead of a 32 bit) which enables compilation of larger models.

The environment variable SEPARATE_PROCESS_JVM can be set to point at a specific Java installation (JRE or
JDK) for the compilation. For Windows users, the environment variable can be found (and set) in the file
set env. bat whichislocated inthe IModelica.org installation folder. It can also be set locally in the Python shell.
If SEPARATE_PROCESS_JVMis hot set, JAVA_HOVE will be used instead. It is also possible to pass arguments to the
JVM with the conpi I e_f mu argument 'j vm ar gs'.

The following example demonstrates how to set the maximum heap space for the VM to one gigabyte by setting
the argument j vm ar gs:

# Inport the conpiler function
from pynodel i ca i nport conpil e_fnu

# Conpile in separate process
conpi | e_fmu(' myPackage. nyModel ', 'nyModel File.np', jvm args='-Xmxlg')

Another option isto access the compilers through the Python package JPype (this used to be the default behavior).
Thisoptionisstill available and can be ebabled by setting the argument separ at e_pr ocess toFal se when calling
e.g. conpi l e_f mu.

2.6. Compilation in more detalil

Compiling with conpi | e_f mu bundles quite a few steps required for the compilation from model file to FMU.
Some of these steps will be briefly described in this section with code examples. For a more detailed review of
the compile procedure, see Section 4, “Architecture” in Chapter 1, Introduction.

2.6.1. Creating a compiler

A compiler (which can be either a Modelica or Optimica compiler) is created by importing the Python classes
from the compiler module. This example code will create a Modelica compiler and a target object.

# I mport the class Model i caConpiler fromthe conpiler nodul e
from pynodel i ca. conpi | er _w appers inport MdelicaConpil er

# Create a conpiler and conpiler target object for FMJ} ME version 1.0
nc = Model i caConpi |l er ()
target = nt.create_target_object("nme", "1.0")

2.6.2. Source tree generation and flattening

In the first step of the compilation, the model is parsed and instantiated. Then the model is transformed into a flat
representati on which can be used to generate C and XML code. If there are errorsin the model, for example syntax
or type errors, Python exceptions will be thrown during these steps.

Note that the default setting for the compiler isto compile an FMU.
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# Parse the nodel and get a reference to the root of the source AST
source_root = nt.parse_nodel (' myPackage. no')

# CGenerate an instance tree representation and get a reference to the nodel instance
nodel _i nstance = nt.instantiate_nodel (source_root, 'nyPackage. myMbdel', target)

# Performflattening and get a flat representation
flat_rep = nt.flatten_nodel (nodel _i nstance, target)

2.6.3. Code generation

The next step iscode generation, which produces C code containing the model equations, and XML filescontaining
model meta data such as variable names and types.

# Generate code
nc. generat e_code(fl at _rep, target)

3. Loading models

Compiled models, FMUs, are loaded in the IM odelica.org Python interface with the FMUMbdel ( ME/ CS) classfrom
the pyf mi module, while optimization problems for the CasADi-based optimization are transferred directly into
the Opt i mi zat i onPr obl emclass from the pyj m module . Thiswill be demonstrated in Section 3.2, “Loading an
FMU”, ??? and Section 3.3, “ Transferring an OptimizationProblem”.

The model classes contain many methods with which models can be manipulated after instantiation. Amongst the
most important methods arei niti al i ze and si mul at e, which are used when simulating. These are explained in
Chapter 5, Smulation of FMUs and Chapter 6, Optimization. For more information on how to use the Optimiza-
tionProblem for optimization purposes, see Chapter 6, Optimization. The more basic methods for variable and
parameter manipulation are explained in Section 4, “ Changing model parameters’.

3.1. The FMU

The FMU (Functional Mock-up Unit) is acompressed file which follows the FMI (Functional Mock-up Interface)
standard. An FMU is created when compiling a Modelicamodel with pynodel i ca. conpi | e_f mu.

There are two types of FMUs, Model Exchange and Co-Simulation. In a Co-Simulation FMU, the integrator for
solving the system is contained in the model while in an Model Exchange FMU, an external integrator is needed
to solve the system. IModelica.org supports export and import of FMU-ME and FMU-CS version 1.0 and 2.0.
The solvers supported for FMU-CS export are CVode and Explicit Euler.

3.2. Loading an FMU

AnFMU file can be loaded in IModelica.org with the method | oad_f mu inthe pyf ni module. The following short
example demonstrates how to do thisin a Python shell or script.

# lmport |oad_frmu from pyfm
frompyfm inport |oad_fru
nmyModel = load_fmu(' myFMJ. fmu')

I oad_f mu returns a class instance of the appropriate FMU type which then can be used to set parameters and used
for simulations.

3.3. Transferring an OptimizationProblem

An optimization problem can be transferred directly from the compiler in IModelica.org into the class opt i i za-
ti onProbl emin the pyj mi module. The transfer is similar to the combined steps of compiling and then loading
an FMU. The following short example demonstrates how to do thisin a Python shell or script.

# |l nmport transfer_optim zation_probl em
frompyjm inport transfer_optim zati on_probl em

# Specify Modelica nmbdel and nodel file
nmodel _name = ' myPackage. nyModel '
no_file ="' myMdel Fil e. '
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# Conpile the nodel, return argunent is an Optim zati onProbl em
myModel = transfer_optim zati on_probl en{ nodel _nanme, no_file)

4. Changing model parameters

Model parameters can be altered with methods in the model classes once the model has been loaded. Some short
examplesin Section 4.1, “ Setting and getting parameters’ will demonstrate this.

4.1. Setting and getting parameters

The model parameters can be accessed with viathe model classinterfaces. It is possible to set and get one specific
parameter at atime or awhole list of parameters.

The following code example demonstrates how to get and set a specific parameter using an example FMU model
from the pyj i . exanpl es package.

# Conpile and | oad the nodel

from pynodel i ca i nport conpile_fnu

frompyfm inport |oad_fnu

my_frmu = conpile frmu(' RLC Circuit','RLC Circuit.mo')
rlc_circuit = | oad_fmu(my_fm)

# Get the value of the paraneter 'resistor.R and save the result in a variable 'resistor_r'
resistor_r =rlc_circuit.get('resistor.R)

# Gve 'resistor.R a new val ue
resistor_r = 2.0
rlc_circuit.set('resistor.R, resistor_r)

The following example demonstrates how to get and set a list of parameters using the same example model as
above. The model is assumed to already be compiled and loaded.

# Create a list of paraneters, get and save the corresponding values in a variable 'val ues'
vars = ['resistor.R, 'resistor.v', 'capacitor.C, 'capacitor.v']
values = rlc_circuit.get(vars)

# Change some of the val ues
val ues[0] = 3.0

values[3] = 1.0
rlc_circuit.set(vars, val ues)

5. Debugging models

The JModelica.org compilers can generate debugging information in order to facilitate localization of errors. There
are three mechanisms for generating such diagnostics. dumping of debug information to the system output, gen-
eration of HTML code that can be viewed with a standard web browser or logs in XML format from the non-
linear solver.

5.1. Compiler logging

Theamount of logging that should be output by the compiler can be set with theargument conpi | er _l og_I evel to
the compile-functions (conpi | e_f mu and also t r ansf er _opt i ni zat i on_pr obl em). The available log levels are
"war ni ng' (default), " error', ' info', verbose' and'debug’ which canalso bewrittenas'w ,'e',"i"', v'

and' d' respectively. The following example demonstrates setting the log level to " i nf o' :

# Set conpiler log level to 'info'
conpil e_frmu(' myMddel', 'nyModels.np', conpiler_log |evel="info')

Thelog is printed to the standard output, normally the terminal window from which the compiler isinvoked.

The log can aso be written to file by appending the log level flag with a colon and file name. Thisis shown in
the following example:

# Set conpiler log level to info and wite the log to a file |og.txt
conpi l e_fmu(' nyModel ', ' nmyModel s. np', conpiler_log |evel="i:log.txt")
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It is possible to specify several log outputs by specifying a comma separated list. The following example writes
log warnings and errors (log level * war ni ng' or * w ) to the standard output and a more verbose logging to file
(loglevel *info or'i'):

# Wite warnings and errors to standard output and the log with |og | evel
conpil e_frmu(' myMdel ', 'nyModels.np', conpiler_log level="wi:log.txt")

info to | og.txt

5.2. Runtime logging
5.2.1. Setting log level

Many events that occur inside of an FMU can generate log messages. The log messages from the runtime are
saved in afile with the default name <FMJU nane>_1 og. t xt . A log file name can aso be supplied when loading
an FMU, thisis shown in the example below:

# Load nodel

model = | oad_f mu(frmu_nane, |og_file_nane='" MyLog. txt"')

How much information that is output to the log file can be controlled by setting the 1 og_I evel argument
to | oad_fmu. | og_| evel can be any number between 0 and 7, where O means no logging and 7 means the
most verbose logging. The log level can also be changed after the FMU has been loaded with the function
set _log_l evel (1 evel ). Settingthel og_| evel isdemonstrated in the following example:

# Load nodel and set log level to 5
nmodel = | oad_frmu(frmu_nanme, |og_| evel =5)

# Change log level to 7
nodel . set _| og_| evel (7)

If the loaded FMU isan FMU exported by JModelica.org, the amount of logging produced by the FMU can also
be atered. Thisisdone by setting the parameter _| og_I evel inthe FMU. Thislog level rangesfrom 0to 7 where
0 represents the least verbose logging and 7 the most verbose. The following example demonstrates this:

# Load nodel (with default log |evel)
model = | oad_f mu(f mu_nane)

# Set anount of | ogging produced to the nobst verbose
nmodel . set (' _|og_l evel', 6)

# Change log level to 7 to be able to see everything that
nmodel . set _| og_| evel (7)

i s being produced

5.2.2. Interpreting logs from FMUs produced by JModelica.org

In IModelica.org, information islogged in XML format, which ends up mixed with FMI Library output in the re-
sulting log file. Example: (the following exampl es are based on the example pyj ni . exanpl es. | ogger _exanpl e.)

FM L:

0. 0000000000000
0. 00000000

nodule = FMCAPI, log level = 5: Calling fmlnitialize
FM L: nodule = Model, log level = 4: [INFQ[FMJ status: OK] <Equati onSol ve>Mbdel equations eval uation invo
FML: nodule = Mbdel, log level = 4: [INFQ [FMJ status: K] <Bl ockEvent I terati ons>Starting bl ock (local)
FM L: nodule = Model, log level = 4: [INFQ[FMJ status: K] <vector nanme="ivs">
FML: nodule = Mbdel, log level = 4: [INFQ [FMJ status: K] <vect or nane="sw tches">
FM L: nodule = Model, log level = 4: [INFQ [ FMJ status: K] <vect or nanme="bool eans" ></ vect or >
FML: nodule = Mbdel, log level = 4: [INFQ [FMJ status: K] <Bl ockl terati on>Local iteration<val ue nane
FM L: nodule = Model, log level = 4: [INFQ [FMJ status: K] <Jacobi anUpdat ed><val ue nane="bl ock" >0</
FML: nodule = Mbdel, log level = 4: [INFQ [FMJ status: K] <matri x nane="j acobi an">
FML: nodule = Model, log level = 4: [INFQ [FMJ status: OK] - 1. 0000000000000000E+00,
FML: nodule = Mbdel, log level = 4: [INFQ [FMJ status: K] -1. 0000000000000000E+00,
FML: nodule = Model, log level = 4: [INFQ[FMJ status: OK] - 1. 0000000000000000E+00,
FML: nodule = Mbdel, log level = 4: [INFQ [FMJ status: K] </ matrix>
FM L: nodule = Model, log level = 4: [INFQ [FMJ status: K] </ Jacobi anUpdat ed>

Thelog can be inspected manually, using general purpose XML tools, or parsed using thetoolsin pyj mi . 1 og. A

pure XML filethat can be read by XML tools can be extracted with

# Extract the log file XM. contents into a pure XM file
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pyjm .l og.extract jm _|og(dest_xm file_nane, |og file_nane)
The XML contentsin the log file can a so be parsed directly:

# Parse the entire XM | og
log = pyjm.log.parse_jm _|log(log_file_nane)

I og will correspond to the top level log node, containing all other nodes. Log nodes have two kinds of children:
named (with anane attributein the XML file) and unnamed (without).

» Named children are accessed by indexing with astring: node[ ' t' ], or simply dot notation: node. t .
» Unnamed children are accessed as alist node. nodes, or by iterating over the node.

Thereisalso aconvenience function gat her _sol ves to extract common information about equation solvesin the
log. Thisfunction collects nodes of certain types from the log and annotates some of them with additional named
children. The following example is from pyjmi.examples.logger_example:

# Parse the entire XM | og

log = pyjm.log.parse_jm _|log(log_file_nane)

# Gather information pertaining to equation solves
sol ves = pyjm .| og. gat her _sol ves(| og)

print

print 'Nunber of solver invocations:', | en(sol ves)

print 'Time of first solve:', sol ves[ 0] . t

print 'Nunber of block solves in first solver invocation:', |en(solves[O0].block sol ves)

print 'Nanmes of iteration variables in first block solve:', solves[O0].block_solves[0].variabl es

print 'Mn bounds in first block solve:', sol ves[ 0] . bl ock_sol ves[ 0] . m n

print 'Max bounds in first block solve:', sol ves[ 0] . bl ock_sol ves[ 0] . max

print 'Initial residual scaling in first block solve:', sol ves[ 0] . bl ock_sol ves[ 0] .initial _residual _sc
print 'Nunmber of iterations in first block solve:', | en(sol ves[ 0] . bl ock_sol ves[ 0] .iterations)
print

print 'First iteration in first block solve

print ' lteration variables:', sol ves[ 0] . bl ock_sol ves[ 0] .iterations[0].ivs

print ' Scaled residuals:', sol ves[ 0] . bl ock_sol ves[ 0] .iterations[0].residuals

print ' Jacobian:\n', sol ves[ 0] . bl ock_sol ves[ 0] .iterati ons[0].jacobi an

print ' Jacobian updated in iteration:', sol ves[ 0] . bl ock_sol ves[ 0] .iterations[0].jacobi an_updat ed
print ' Residual scaling factors:"', sol ves[ 0] . bl ock_sol ves[ 0] .iterations[0].residual _scaling
print ' Residual scaling factors_updated:', solves[0].block_solves[O].iterations[O0].residual_scaling_upd
print ' Scal ed residual norm', sol ves[ 0] . bl ock_sol ves[ 0] .iterati ons[ 0] . scal ed_resi dual _norn

5.3. Getting HTML diagnostics

By setting the compiler option generate_ht m _di agnostics to true, a number of HTML pages contain-
ing diagnostics are generated. The HTML files are generated in the directory Mbdel _Name_di agnosti cs,
where Model _Nane is the name of the compiled model. As compared to the diagnostics generated by the
conpi | er _I og_| evel argument, the HTML diagnostics contains only the most important information, but it also
provides a better overview. Opening the file Model _Name_di agnosti cs/ i ndex. ht m in a web browser, results
in a page similar to the one shown below.

Mbdel i ca. Mechani cs. Rot ati onal . Exanpl es. Fi r st

Pr obl ens:
0 errors, O conpliance errors, 1 warnings

Model before transformation

Nurmber of independent constants:
Number of Real independent constants:
Nurmber of | nteger independent constants
Number of Enum i ndependent constants:
Nurmber of Bool ean i ndependent constants
Number of String i ndependent constants
Nurmber of dependent constants
Number of Real dependent constants:
Nurmber of | nteger dependent constants:
Number of Enum dependent constants

[oNeNeolNolNoNoNoNoll i

N
o



Working with Models

Nurmber of Bool ean dependent constants:
Number of String dependent constants:
Nurmber of independent paraneters:
Nunber of Real independent paraneters:
Nurmber of | nteger independent paraneters:
Nunber of Enum i ndependent paraneters:
Nurmber of Bool ean i ndependent paraneters:
Number of String i ndependent paraneters:

Nurmber of dependent paraneters:

Number of Real dependent paraneters:
Nurmber of | nteger dependent paraneters:
Nunber of Enum dependent paraneters:
Nurmber of Bool ean dependent paraneters:
Number of String dependent paraneters:

Nunber of vari abl es :

Number of Real variabl es:
Nurmber of | nteger vari abl es:
Number of Enum vari abl es:
Number of Bool ean vari abl es:
Number of String vari abl es:

Nunber of Real differentiated variables:

Nunber of Real derivative vari ables:

Nurmber of Real al gebraic vari abl es:

Nunber of inputs:

Nurmber of Real inputs:
Number of |nteger inputs:
Nurmber of Enum i nputs:
Number of Bool ean inputs:
Nurmber of String inputs:

Nunber of discrete variables :

Number of Real discrete vari ables:
Nurmber of |nteger discrete variables:
Number of Enum di screte vari abl es:
Nunber of Bool ean di screte vari abl es:
Nurmber of String discrete vari abl es:

Nunber of equati ons:

Nunber of variables w th bindi ng expression:
Nurmber of Real variables with binding exp:
Number of Integer variables binding exp:
Nurmber of Enum vari abl es bi ndi ng exp:
Number of Bool ean vari abl es bi ndi ng exp:
Nurmber of String variabl es bindi ng exp:

Total nunber of equations:

Nunmber of initial equations:

Nunber of relational exps in equations:

Nunmber of relational exps in init equations:

Fl att ened nodel

» O

w w

(&)

[EEN

OI—‘OgOOOO##U'IOOOOOOOOOOOO#OOOOOOOO‘IU‘IOOOOCD@ON#OHNOO

Connecti on sets
Model after transformation

Nunber of independent constants:
Nurmber of Real independent constants:
Number of |nteger independent constants:
Nurmber of Enum i ndependent constants:
Number of Bool ean i ndependent constants:
Nurmber of String independent constants:
Nunber of dependent constants:
Nurmber of Real dependent constants:
Number of | nteger dependent constants:
Nurmber of Enum dependent constants:
Number of Bool ean dependent constants:
Nurmber of String dependent constants:
Nurmber of independent paraneters:
Nurmber of Real independent paraneters:
Number of |Integer independent paraneters:
Nurmber of Enum i ndependent paraneters:
Number of Bool ean i ndependent paraneters:
Nurmber of String independent paraneters:
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Nunmber of dependent paraneters:

Number of Real dependent paraneters:
Nurmber of | nteger dependent paraneters:
Nunber of Enum dependent paraneters:
Nurmber of Bool ean dependent paraneters:
Number of String dependent paraneters:

Nunber of vari ables :

Number of Real vari abl es:
Nurmber of | nteger vari abl es:
Number of Enum vari abl es:
Number of Bool ean vari abl es:
Nunber of String variabl es:

Nunber of Real differentiated variables:

Nunber of Real derivative vari abl es:

Nurmber of Real al gebraic vari abl es:

Nunber of inputs:

Nurmber of Real inputs:
Nunber of | nteger inputs:
Nurmber of Enum i nputs:
Number of Bool ean inputs:
Nurmber of String inputs:

Nunber of discrete variables :

Number of Real discrete variables:
Nurmber of |nteger discrete variabl es:
Number of Enum di screte vari abl es:
Number of Bool ean di screte vari abl es:
Nurmber of String discrete vari abl es:

Nunber of equati ons:

Nurmber of variables w th bindi ng expression:
Number of Real variables with binding exp:
Nurmber of | nteger variabl es binding exp:
Number of Enum vari abl es bi ndi ng exp:
Nurmber of Bool ean vari abl es bi ndi ng exp:
Number of String variabl es binding exp:

Total nunber of equati ons:

Nunber of initial equations:

Nunber of relational exps in equations:

Nunber of relational exps in init equations:

Transf or ned nodel

o 0o

OFRPANOOOOOONOOODODOODODODOCOOONMPMODODOONNOODODOO O®

Alias sets (13 sets, 40 elim nated vari abl es)

BLT di agnostics
BLT di agnostics table

Nunmber of unsol ved equation bl ocks in DAE initialization system 1: {4}
Nunber of unsol ved equati on bl ocks in DAE system 1: {4}

Nunber of unsol ved equati on blocks in DAE initialization systemafter tearing: 1: {1}
Nunmber of unsol ved equation bl ocks in DAE system after tearing: 1: {1}

Note that some of the entries, including Pr obl ens, Fl att ened nodel , Connecti on sets, Transf or med nodel ,
Alias sets, BLT diagnostics table and BLT diagnostics are links to sub pages containing additional
information. For example, the BLT diagnostics page contains information about individual systems of equations:

--- Block 7 ---
Sol ved bl ock of 1 vari abl es:
Conput ed vari abl e:
inertia2.flange_b.tau
Sol uti on:
- ( - ( danper.flange_b.tau ) ) - ( - ( spring.flange_b.tau ) ) + O

--- Block 8 (Unsol vable bl ock 0) ---
Non- sol ved |inear bl ock of 4 vari abl es:
Coefficient variability: Paraneter
Unknown vari abl es:

inertia2. a
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i deal Gear . fl ange_b.tau
i deal Gear.fl ange_a.tau

inertial.a
Equat i ons:
inertial.a = ( ideal Gear.ratio ) * ( inertia2.a)
( inertia2.J ) * ( inertia2.a) = - ( idealCear.flange_b.tau ) + inertia2.flange_b.tau
0 = ( ideal Gear.ratio ) * ( ideal Gear.flange_a.tau ) + ideal Gear.flange_b.tau
( inertial.J ) * ( inertial.a) = - ( torque.flange.tau ) - ( ideal Gear.flange_a.tau )

Additionally thereis atable view of the BLT. It can be found onthe BLT di agnosti cs t abl e page. It providesa
graphical representation of the BLT. The view islimited to 300 equations due to the complexity of the graph.
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Chapter 5. Simulation of FMUs

1. Introduction

JModelica.org supports simulation of models described in the Modelica language and models following the FMI
standard, see Section 3, “ Technology” in Chapter 1, Introduction. The simulation environment uses Assimulo as
standard which is a standalone Python package for solving ordinary differential and differential algebraic equa-
tions. Loading and simulation of FM Ushas additionally been made available as a separate Python package, PyFMI.

This chapter describes how to load and simulate FM Us using explanatory examples.

2. A first example

This example focuses on how to use IModelica.org's simulation functionality in the most basic way. The model
which isto be simulated isthe Van der Pol problem described in the code below. The model isalso available from
the examplesin IModelica.org in the file vDP. nop.

nmodel VDP
/| State start val ues
paraneter Real x1_0
parameter Real x2_0

non
=

/'l The states
Real x1(start = x1_0);
Real x2(start = x2_0);

/1l The control signal

i nput Real u;
equati on
der(x1) = (1 - x272) * x1 - x2 + u;
der (x2) = x1;
end VDP;

Create anew file in your working directory called vDP. mo and save the model.

Next, create a Python script file and write (or copy paste) the commands for compiling and loading a model:

# Import the function for conpilation of nodels and the | oad_fmu net hod
from pynodel i ca i nport conpil e_fnu
frompyfm inport |oad_fnu

# Inport the plotting library
import matplotlib. pyplot as plt

Next, we compile and load the model:

# Conpi | e nodel
f mu_name = conpil e_f mu("VDP", " VDP. no")

# Load nodel
vdp = | oad_f nu( f mu_nane)

Thefunction conpi | e_f mu compilesthe model into abinary, which isthen loaded when the vdp object is created.
This object represents the compiled model, an FMU, and is used to invoke the simulation algorithm (for more
information about model creations and options, see Chapter 4, Working with Models):

res = vdp.sinulate(final _tinme=10)

In this case we use the default simulation algorithm together with default options, except for the final time which
we set to 10. The result object can now be used to access in a dictionary-like way the simulation result:

x1
X2

res['x1']
res['x2']
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t =res['tinme']

Thevariabletrajectories are returned as NumPy arrays and can be used for further analysis of the simulation result
or for visuaization:

plt.figure(1)

plt.plot(t, x1, t, x2)
plt.legend(('x1',"'x2"))
plt.title('Van der Pol oscillator."')
plt.ylabel (' Angle (rad)')
plt.xlabel (' Time (s)')

plt.show()

In Figure 5.1, “Simulation result of the Van der Pol oscillator.” the simulation result is shown.

Figureb5.1. Smulation result of the Van der Pol oscillator.

Van der Pol oscillator.

Angle (rad)

Time (s)

3. Simulation of Models

Simulation of modelsin IModelica.org is performed via the simulate method of a model object. The FMU model
objectsin IModelica.org are located in PyFMI:

* FMUMbdel ME1 / FMUMbdel ME2
* FMUMbdel CS1 / FMJUMbdel CS2

FMUMbdel M=* / FMUMbdel CS* also supports compiled models from other simulation/modelling tools that follow
the FMI standard (extension .fmu) (either Model exchange FMUs or Co-Simulation FMUS). The support is both
for FMI version 1.0 and FMI version 2.0. For more information about compiling a model in IModelica.org see
Chapter 4, Working with Models.

The simulation method is the preferred method for simulation of models and which by default is connected to the
Assimulo simulation package but can aso be connected to other simulation platforms. The simulation method for
FMUModel ME* /| FMUMbdel CS* isdefined as:
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cl ass FMUMbdel (ME/CS) (.. .)

def sinulate(self,
start _tinme=0. 0,
final _tine=1.0,
i nput =(),
al gori t hm=' Assi nul oFM Al g',
options={}):
And used in the following way:

res = FMUModel (ME/ CS) *. sinul ate() # Using default val ues

For FMUmbdel Cs*, the FMU contains the solver and is thus used (although using the same interface).

3.1. Convenience method, load _fmu

Sincethere are different FM|I specifications for Model exchange and Co-Simulation and also differences between
versions, aconvenience method, | cad_f nmu has been created. This method isthe preferred access point for loading
an FMU and will return an instance of the appropriate underlying FMUvbdel ( CS/ ME) * class.

model = | oad_f mu(" myFMJ. f nu")

3.2. Arguments

The start and final time attributes are simply the time where the solver should start the integration and stop the
integration. The input however isabit more complex and is described in more detail in the following section. The
algorithm attributeiswhere the different simulation package can be specified, however currently only aconnection
to Assimulo is supported and connected through the algorithm Assi nul oFM Al g for FMUMbdel ME*.

3.2.1. Input

The input defines the input trajectories to the model and should be a 2-tuple consisting of the name(s) of the input
variables and the second argument should be either a data matrix or afunction. If the argument is a data matrix it
should contain atime vector as the first column and the second column should correspond to the first namein the
first argument and so forth. If instead the second argument is a function it should be defined to take the time as
input and return the number of inputs in the order defined by the first argument.

For example, consider that we have a model with an input variable u1 and that the model should be driven by a
sinus wave asinput. Also we are interested in the interval 0 to 10.

import nunpy as N

t = N linspace(0.,10., 100) # Create one hundred evenly spaced points
u = Nsin(t) # Create the input vector
u_traj = N.transpose(N. vstack((t,u))) # Create the data matri x and transpose

# it to the correct form

The above code have created the data matrix that we are interested in giving to the model as input, we just need
to connect the data to a specific input variable, u1:

input_object = (‘ul', u_traj)

Now we are ready to simulate using the input and simulate 10 seconds.

res = nodel . si mul ate(final _time=10, i nput=i nput_obj ect)

If we on the other hand would have two input variables, ul and u2 the script would instead look like:

i mport nunpy as N

t = N linspace(0.,10., 100) # Create one hundred evenly spaced points
ul = N.sin(t) # Create the first input vector

u2 = N.cos(t) # Create the second input vector

u_traj = N transpose(N. vstack((t,ul,u2))) # Create the data matrix and

# transpose it to the correct form
input_object = (['ul',"u2'], u_traj)
res = nodel .simulate(final _tinme=10, input=input_object)
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Note that the variables are now a List of variables.

If wewereto do the same example using input functionsinstead, the code would ook like for the singleinput case:
i nput_object = ('ul', N sin)
and for the double input case:

def input_function(t):
return N.array([N sin(t), N cos(t)])

input_object = (['ul',"'u2'],input_function)
3.2.2. Options for FMUModelME1 and FMUModelME2

The options attribute are where options to the specified algorithm are stored and are preferably used together with:

opts = FMUMbdel ME*. si nmul at e_opti ons()

which returns the default options for the default algorithm. Information about the available options can be viewed
by typing help on the opt s variable:

>>> hel p(opt s)
Options for the solving the FMJ using the Assinul o sinulation package.
Currently, the only solver in the Assinul o package that fully supports
sinmulation of FMJs is the sol ver CVode.

In Table 5.1, “General options for AssmuloFMIAIg.” the general options for the AsssmuloFMIAIlg agorithm
are described while in Table 5.2, “Selection of solver arguments for CVode” a selection of the different solver
arguments for the ODE solver CVode is shown. Moreinformation regarding the solver options can be found here,
http://www.jmodelica.org/assimulo.

Table5.1. General optionsfor AsssimuloFMIAIg.

Option Default Description

solver 'CVode Specifies the simulation method that
is to be used. Currently support-
ed solvers are, CVode, Radaus0ODE,
RungeK utta34, Dopri5, RodasODE,
LSODAR, ExplicitEuler. Although
the recommended solver is"CVode".

ncp 0 Number of communication points. If
ncp is zero, the solver will return the
internal steps taken.

initialize True If set to True, the initializing al-
gorithm defined in the FMU mod-
e is invoked, otherwise it is as
sumed the user have manualy in-
voked model.initialize()

write_scaled_result False Set this parameter to Trueto writethe
result to filewithout taking scalingin-
to account. If the value of scaled is
False, then the variable scaling fac-
tors of the model are used to repro-
duced the unscaled variable values.

result_file_ name Empty string (default generated file| Specifies the name of the file where
name will be used) the simulation result is written. Set-
ting this option to an empty string
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Option

Default

Description

results in a default file name that is
based on the name of the model class.

filter

None

A filter for choosing which variables
to actually store result for. The syn-
tax can be found here. An example
isfilter = "*der" , store all variables
ending with 'der' and filter =["*der*",
"summary*"], store al variables with
"der" in the name and all variables
starting with "summary".

result_handling

“file"

Specifies how the result should be
handled. Either stored to file or stored
in memory. One can aso use a
custom handler. Available options:

"file", "memory", "custom"

Letslook at an example, consider that you want to simulate a FMU model using the solver CV ode together with
changing the discretization method (di scr) from BDF to Adams:

opts = nodel . sinmul ate_options()

#opts[' solver'] = 'CVode'

opt s[' CVode_options']['discr']
opts['initialize'] = Fal se
nodel . si nul at e( opti ons=opt s)

# Not necessary,
= ' Adans'

# Retrieve the default options
default solver is CVode
# Change from using BDF to Adans

# Don't initialize the nodel
# Pass in the options to sinulate and sinulate

It should al so be noted from the above exampl e the optionsregarding a specific solver, say thetolerancesfor cvode,
should be stored in adouble dictionary where the first is named after the solver concatenated with _opt i ons:

opts[' CVode_options']["'atol']

= 1.0e-6

# Options specific for CVode

For the general options, as changing the solver, they are accessed as a single dictionary:

opts['solver'] = 'CVode'
opts['ncp'] = 1000

# Changi ng t he sol ver
# Changi ng the nunber of communi cation points.

Table5.2. Selection of solver argumentsfor CVode

Option

Default

Description

discr

'BDF

The discretization method. Can be ei-
ther 'BDF' or 'Adams

iter

'Newton'

The iteration method. Can be either
'Newton' or 'FixedPoint'.

maxord

The maximum order used. Maximum
for 'BDF' is 5 while for the 'Adams
method the maximum is 12

maxh

Inf

Maximum step-size. Positive float.

atol

rtol*0.01* (nominal values of the
continuous states)

Absolute Tolerance. Can be an ar-
ray of floats where each value corre-
sponds to the absolute tolerance for
the corresponding variable. Can also
be a single positive float.

rtol

1.0e-4

The relative tolerance. The relative
tolerance are retrieved from the 'de-
fault experiment' sectioninthe XML-
fileand if not found are set to 1.0e-4

28



https://en.wikipedia.org/wiki/Glob_%28programming%29

Simulation of FMUs

3.2.3. Options for FMUModelCS1 and FMUModelCS2
The options attribute are where options to the specified algorithm are stored and are preferably used together with:
opts = FMUMbdel CS*. si nul at e_opti ons()

which returns the default options for the default algorithm. Information about the available options can be viewed
by typing help on the opt s variable:

>>> hel p(opts)
Options for the solving the CS FMJ.

In Table 5.3, “General options for FMICSAIg.” the general options for the FMICSAIg algorithm are described.

Table 5.3. General optionsfor FMICSAIg.

Option Default Description
ncp 500 Number of communication points.
initialize True If set to True, the initializing al-

gorithm defined in the FMU mod-
el is invoked, otherwise it is as-
sumed the user have manualy in-
voked model.initialize()

write_scaled result False Set this parameter to Trueto writethe
result to filewithout taking scalingin-
to account. If the value of scaled is
False, then the variable scaling fac-
tors of the model are used to repro-
duced the unscaled variable values.

result_file_name Empty string (default generated file| Specifies the name of the file where
name will be used) the simulation result is written. Set-
ting this option to an empty string
results in a default file name that is
based on the name of the model class.

filter None A filter for choosing which vari-
ables to actually store result
for. The syntax can be found
in http://en.wikipedia.org/wiki/Glob_
%28programming%29 . An example
is filter = "*der" , store all variables
ending with 'der’ and filter = ["*der*",
"summary*"], store al variables with
"der" in the name and all variables
starting with "summary".

result_handling "file" Specifies how the result should be
handled. Either stored to file or stored
in memory. One can aso use a
custom handler. Available options:
"file", "memory", "custom"

3.3. Return argument

The return argument from the simulate method is an object derived from a common result object Resul t Base in
al gorithmdrivers. py with afew extra convenience methods for retrieving the result of avariable. The result
object can be accessed in the same way as adictionary type in Python with the name of the variable as key.
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res = nodel . si mul at e()
y =res['y'] # Return the result for the variabl e/ paraneter/constant y
dery = res['der(y)"'] # Return the result for the variabl e/ paraneter/constant der(y)

This can be done for all the variables, parameters and constants defined in the model and is the preferred way of
retrieving the result. There are however some more options available in the result object, see Table 5.4, “Result
Object”.

Table5.4. Result Object

Option Type Description

options Property Gets the options object that was used
during the simulation.

solver Property Gets the solver that was used during
the integration.

result_file Property Gets the name of the generated result
file.

is variable(name) Method Returns True if the given name is a
time-varying variable.

data_matrix Property Gets the raw data matrix.

is_negated(name) Method Returns True if the given name is
negated in the result matrix.

get_column(name) Method Returnsthe column number in the da-
ta matrix which corresponds to the
given variable.

4. Examples

In the next sections, it will be shown how to use the IModelica.org platform for simulation of various FMUs.

The Python commands in these examples may be copied and pasted directly into a Python shell, in some cases
with minor modifications. Alternatively, they may be copied into atext file, which also is the recommended way.

4.1. Simulation of a high-index model

Mechanical component-based models often result in high-index DAES. In order to efficiently integrate such
models, Modelica tools typically employs an index reduction scheme, where some equations are differen-
tiated, and dummy derivatives are selected. In order to demonstrate this feature, we consider the mod-
€l Mbdel i ca. Mechani cs. Rot at i onal . Exanpl es. Fi rst from the Modelica Standard library, see Figure 5.2,
“Modelica.M echanics.Rotational .First connection diagram”. The model is of high index since there are two rotat-
ing inertias connected with arigid gear.

Figure5.2. Modelica.M echanics.Rotational.Fir st connection diagram
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First create a Python script file and enter the usual imports:

import matplotlib. pyplot as plt
from pynodel i ca i nport conpile_fnu
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frompyfm inport |oad_fnu

Next, the model is compiled and loaded:

# Conpi |l e nodel
fmu_name = conpil e_fu("Mdel i ca. Mechani cs. Rot ati onal . Exanpl es. First", ())

# Load nodel
model = | oad_f mu(f mu_nane)

Notice that no file name, just an empty tuple, is provided to the function conpi | e_f nu, sincein this case the model
that is compiled residesin the Modelica standard library. In the compilation process, the index reduction algorithm
isinvoked. Next, the model is simulated for 3 seconds:

# Load result file
res = nodel .sinmulate(final _tine=3.)

Finally, the simulation results are retrieved and plotted:

wl = res['inertial.w ]
W2 = res['inertia2.w]
W3 =res['inertia3.w]

tau = res['torque.tau']
t =res['time']

plt.figure(l)
plt.subplot(2,1,1)
plt.plot(t,wl,t,w2,t,w3)
plt.grid(True)
plt.legend(['inertial.w ,'inertia2.w ,'inertia3.w])
plt.subplot(2,1,2)
plt.plot(t,tau)
plt.grid(True)
plt.legend(['tau'])
plt.xlabel ("time [s]"')
pl t.show()

Y ou should now see a plot as shown below.

Figure5.3. Smulation result for M odelica.M echanics.Rotational . Examples.Fir st

— inertial.w |/
— inertia2.w||
— inertia3.w||

time [s]

4.2. Simulation and parameter sweeps

This example demonstrates how to run multiple simulations with different parameter values. Sweeping parameters
is a useful technique for analysing model sensitivity with respect to uncertainty in physical parameters or initial
conditions. Consider the following model of the Van der Pol oscillator:
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nodel VDP
/] State start val ues
parameter Real x1 0 = O;
paraneter Real x2_0 = 1;

/| The states
Real x1(start
Real x2(start

x1 0);
x2_0);

/1 The control signal
i nput Real u;

equati on
der(x1) = (1 - x272) * x1 - x2 + u;
der (x2) = x1;

end VDP;

Notice that the initial values of the states are parametrized by the parameters x1_0 and x2_0. Next, copy the
Modelica code above into a file vDP. no and save it in your working directory. Also, create a Python script file
and nameit vdp_pp. py. Start by copying the commands:

i mport nunpy as N

import pylab as P

from pynodel i ca i mport conpile_fnu
frompyfm inport |oad_fnu

into the Python file. Compile and load the model:

# Define nodel file nane and cl ass nane
nmodel _name = ' VDP'
nofile = ' VDP. no'

# Conpi |l e nodel
f mu_name = conpil e_f mu( nodel _nane, nofil e)

Next, we definetheinitial conditionsfor which the parameter sweep will be done. The statex2 startsat 0, whereas
theinitial condition for x1 is swept between -3 and 3:

# Define initial conditions
N_points = 11

x1 0 = N linspace(-3.,3.,N_points)
x2_0 = N. zeros(N_poi nts)

In order to visualize the results of the simulations, we open a plot window:

fig = P.figure()
P.clf()

P. hol d( Tr ue)

P. xl abel (' x1')
P.yl abel (' x2")

The actual parameter sweep is done by looping over the initial condition vectors and in each iteration set the
parameter values into the model, simulate and plot:

for i in range(N_points):
# Load nodel
vdp = | oad_f nu( f mu_nane)
# Set initial conditions in nodel
vdp. set (' x1_0',x1_0[i])
vdp. set (' x2_0',x2_0[i])
# Sinmul ate
res = vdp. sinul ate(final _ti me=20)
# Get simulation result
xl=res['x1']
x2=res['x2']
# Plot sinulation result in phase plane pl ot
P.pl ot (x1, x2,"'b")

P.grid()

P. show()
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Y ou should now see aplot similar to that in Figure 5.4, “ Simulation result-phase plane”.

Figure 5.4. Simulation result-phase plane
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4.3. Simulation of an Engine model with inputs

In this example the model is larger than the previous. It is a dlightly modified version of the model
EngineV6_analytic from the Multibody library in the Modelica Standard Library. The modification consists of a
replaced load with a user defined load. This has been done in order to be able to demonstrate how inputs are set
from a Python script. In Figure 5.5, “Overview of the Engine model” the model is shown.

Figure5.5. Overview of the Engine model

engine
torqueSensor load torgue
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— /—\\tau
tau J=1
world filter
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The Modelica code for the model is shown below, copy and save the code in afile named Engi neV6. no.

nmodel Engi neV6_anal ytic_with_i nput
out put Real engi neSpeed_rpm= Modelica. Slunits. Conversions.to_rpn(load.w);
out put Real engineTorque = filter.u;
out put Real filteredEngi neTorque = filter.y;

i nput Real u;
i mport Mbdel i ca. Mechani cs. *;
i nner Mul ti Body. Worl d worl d;

Mul t i Body. Exanpl es. Loops. Utilities. Engi neV6_anal yti c engi ne(redecl are
nodel Cylinder = MiltiBody. Exanpl es. Loops. Utilities.Cylinder_anal ytic_CAD);
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Rot at i onal . Conponents. I nertia | oad(
phi (start=0, fi xed=true), w(start=10,fi xed=true),
st at eSel ect =St at eSel ect . al ways, J=1);

Rot at i onal . Sensors. Tor queSensor t or queSensor

Rot at i onal . Sour ces. Tor que torque

Model i ca. Bl ocks. Conti nuous. Criti cal Danping filter(
n=2,i ni t Type=Mbdel i ca. Bl ocks. Types. I ni t. St eadySt at e, f =5)

equati on
torque.tau = u

connect (worl d. frame_b, engine.franme_a)

connect (torque. fl ange, | oad.fl ange_b);

connect (torqueSensor. fl ange_a, engine.flange_b);
connect (torqueSensor. fl ange_b, | oad.flange_a);
connect (torqueSensor.tau, filter.u)

annot ati on (experiment (StopTi ne=1.01))

end Engi neV6_anal ytic_w t h_i nput;

Now that the model has been defined, we create our Python script which will compile, simulate and visualize the
result for us. Create a new text-file and start by copying the below commands into the file. The code will import
the necessary methods and packages into Python.

from pynodel i ca i nport conpil e_fnu
frompyfm inport |oad_fnu
import pylab as P

Compiling the model is performed by invoking the conpi I e_f mu method where the first argument is the name of
the model and the second argument is where the model is located (which file). The method will create an FMU in
the current directory and in order to simulate the FMU, we need to additionally load the created FMU into Python.
Thisis done with the | oad_f mu method which takes the name of the FMU as input.

nanme = conpil e_fmu("Engi neV6_anal ytic_with_input", "EngineV6.m")
nmodel = | oad_f nmu( nane)

So, now that we have compiled the model and loaded it into Python we are almost ready to simulate the model.
First however, we retrieve the simulation options and specify how many result points we want to receive after
asimulation.

opts = nodel . sinmul ate_options()
opts["ncp"] = 1000 #Specify that 1000 out put points should be returned

A simulation isfinally performed using the si mul at e method on the model and as we have changed the options,
we need to additionally provide these options to the simulate method.

res = nodel . sinmul at e( opti ons=opt s)

The simulation result is returned and stored into the r es object. Result for atrajectory is easily retrieved using
a Python dictionary syntax. Below is the visualization code for viewing the engine torque and the engine speed.
One could instead use the Plot GUI for the visualization as the result are stored in afilein the current directory.

. subpl ot (211)

.suptitle("EngineVe")
.plot(res["tinme"],res["filteredEngi neTorque"], |abel ="Filtered Engi ne Torque")
grid()

. | egend()

.yl abel ("Torque [N.m")

. subpl ot (212)

.plot(res["tine"], res["engi neSpeed_rpn'], |abel ="Engi ne Speed")
grid()

.1 egend()

. x|l abel ("Tine [s]")

.yl abel ("Speed [1/m n]")

. show()
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In Figure 5.6, “Resulting trajectories for the engine model.” the trajectories are shown.

Figure5.6. Resulting trajectoriesfor the engine model.
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Above we have simulated the engine model and looked at the result, we have not however specified any load as
input. Remember that the model we are looking at has a user specified load. Now wewill create a Python function
that will act as our input. We create a function that depends on the time and returns the value for use as input.

def input_func(t):
return -100. 0*t

In order to use thisinput in the simulation, simply provide the name of the input variable and the function as the
input argument to the simulate method, see below.

res = nodel . simul ate(options=opts, input=("u",input_func))
Simulate the model again and look at the result and the impact of the input.

L arge models contain an enormous amount of variablesand by default, all of these variablesare stored in theresult.
Storing the result takes time and for large models the saving of the result may be responsible for the majority of
the overall simulation time. Not al variables may be of interest, for example in our case, we are only interested
in two variables so storing the other variables are not necessary. In the options dictionary there is afilter option
which allows to specify which variables should be stored, soin our case, try the below filter and look at the impact
on the simulation time.

opts["filter"] = ["filteredEngi neTorque", "engi neSpeed_rpni']
4.4. Simulation using the native FMI interface

This example shows how to use the native IModelica.org FMI interface for simulation of an FMU (FMI 1.0 for
Model Exchange). The FMU that isto be simulated isthe bouncing ball example from Qtronics FMU SDK (http://
www.gtronic.de/fen/fmusdk.html). This example is written similar to the example in the documentation of the
'Functional Mock-up Interface for Model Exchange' version 1.0 (https://www.fmi-standard.org/). The bouncing
ball model isto be simulated using the explicit Euler method with event detection.

The example can aso be found in the Python examples catalog in the IModelica.org platform.

The bouncing ball consists of two equations,
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v

h
0=—g

and one event function (also commonly called root function),
h>0

Where the ball bounces and lose some of its energy according to,
Vg — —€Ug

Here, his the height, g the gravity, v the velocity and e a dimensionless parameter. The starting values are, h=1
and v=0 and for the parameters, e=0.7 and g = 9.81.

4.4.1. Implementation

Start by importing the necessary modules,
i mport nunpy as N

import pylab as P # Used for plotting
frompyfm.fm inmport FMUvodel MEL # The FM Interface for Mddel Exchange

Next, the FMU isto be loaded and initialized

# Load the FMJ by specifying the fmu together with the path.
bounci ng_fmu = FMUModel MEL("' / pat h/t o/ FMJ bounci ngBal | . f mu' )

Tstart = 0.5 # The start tine.
Tend = 3.0 The final simulation tine.
bouncing fru.tine = Tstart Set the start tine before the initialization.

Initialize the nodel. Also sets all the start
attributes defined in the XM file.

#

#

# (Defaults to 0.0)
bouncing frmu.initialize() #
#

The first line loads the FMU and connects the C-functions of the model to Python together with loading the
information from the XML-file. The start time also needs to be specified by setting the property t i me. The model
is asoinitialized, which must be done before the simulation is started.

Note that if the start time is not specified, FMUMbdel MEL tries to find the starting time in the XML-file structure
'default experiment’ and if successful starts the simulation from that time. Also if the XML-file does not contain
any information about the default experiment the simulation is started from time zero.

Then information about the first step isretrieved and stored for later use.

# Get Continuous States

X = bounci ng_f mu. cont i nuous_st at es

# Get the Nominal Val ues

x_nom nal = bounci ng_f mu. nom nal _conti nuous_st at es
# Get the Event |ndicators

event _ind = bounci ng_fmu. get _event _i ndi cators()

# Values for the solution

vref = [bouncing_fmu. get_variable_valueref('h")] +\
[ bounci ng_f mu. get _vari abl e_val ueref (' v')] # Retrieve the val ureferences for the

# values 'h' and 'V’

t_sol = [Tstart]

sol = [bouncing_fnru.get_real (vref)]

Here the continuous states together with the nominal values and the event indicators are stored to be used in the
integration loop. In our case the nominal values are all equal to one. This information is available in the XML-
file. We dso create lists which are used for storing the result. The final step before the integration is started is
to define the step-size.

tinme = Tstart

Tnext = Tend # Used for time events
dt = 0.01 # Step-size
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We are now ready to create our main integration loop where the solution is advanced using the explicit Euler
method.

# Main integration | oop

while time < Tend and not bouncing_fnmu. get _event info().term nateSi nul ati on:
#Conmput e the derivative of the previous step f(x(n), t(n))
dx = bounci ng_fnmu. get_derivatives()

# Advance
h = mn(dt, Tnext-tine)
time =tine + h

# Set the tinme
bouncing fru.time = time

# Set the inputs at the current time (if any)
# bounci ng_fru. set _real, set_integer, set_bool ean, set_string (val ueref, val ues)

# Set the states at t = time (Performthe step using x(n+1)=x(n)+hf(x(n), t(n))
X = x + h*dx
bounci ng_f mu. conti nuous_states = x

Thisisthe integration loop for advancing the solution one step. The loop continues until the final time have been
reached or if the FMU reported that the simulation isto be terminated. At the start of the loop the derivatives of the
continuous states are retrieved and then the simulation time is incremented by the step-size and set to the model.
It could also be the case that the model depends on inputs which can be set using theset _(real /...) methods.

Note that only variables defined in the XML-file to be inputs can be set using the set _(real /...) methods
according to the FMI specification.

The step is performed by calculating the new states (x+h* dx) and setting the valuesinto the model. As our model,
the bouncing ball also consist of event functions which needs to be monitored during the simulation, we have to
check the indicators which is done below.

# Get the event indicators at t = tinme
event _i nd_new = bounci ng_f nmu. get _event _i ndi cat ors()

# I nformthe nodel about an accepted step and check for step events
step_event = bounci ng_f nu. conpl et ed_i nt egrat or _step()

# Check for tine and state events
tine_event = abs(time-Tnext) <= 1.e-10
state_event = True if True in ((event_ind_new>0.0) != (event_ind>0.0)) else False

Events can be, time, state or step events. Thetime events are checked by continuously monitoring the current time
and the next time event (Tnext ). State events are checked against sign changes of the event functions. Step events
are monitored inthe FMU, in the method conpl et ed_i nt egr at or _st ep() and return Tr ue if any event handling
is necessary. If an event have occurred, it needs to be handled, see below.

# Event handling

if step_event or tinme_event or state_event:
el nfo = bounci ng_f nu. get _event _i nfo()
elnfo.iterati onConverged = Fal se

# Event iteration

whil e elnfo.iterationConverged == Fal se
bounci ng_f mu. event _update(' 0') # Stops at each event iteration
el nfo = bounci ng_f nu. get _event _i nfo()

# Retrieve solutions (if needed)

if elnfo.iterati onConverged == Fal se
# bounci ng_f mu. get _real , get _i nt eger, get _bool ean, get _stri ng(val ueref)
pass

# Check if the event affected the state values and if so sets them
i f el nfo. stateVal uesChanged
X = bounci ng_f nmu. cont i nuous_st at es
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# Get new nomi nal val ues.
i f el nfo.stateVal ueRef er encesChanged:
atol = 0.01*rtol *bounci ng_f mu. nom nal _cont i nuous_st at es

# Check for new time event
i f el nfo.upcom ngTi meEvent :

Tnext = m n(el nfo.next Event Ti me, Tend)
el se:

Tnext = Tend

If an event occurred, we enter the iteration loop where we loop until the solution of the new states have converged.
During this iteration we can also retrieve the intermediate values with the normal get methods. At this point
el nf o contains information about the changes made in the iteration. If the state values have changed, they are
retrieved. If the state references have changed, meaning that the state variables no longer have the same meaning
as before by pointing to another set of continuous variables in the model, for example in the case with dynamic
state selection, new absolute tolerances are cal culated with the new nominal values. Finally the model is checked
for anew time event.

event _ind = event _i nd_new

# Retrieve solutions at t=time for outputs
# bounci ng_fru. get _real, get_integer, get_bool ean, get _string (val ueref)

t_sol += [tine]
sol += [bounci ng_frmu. get _real (vref)]

In the end of the loop, the solution is stored and the old event indicators are stored for use in the next loop.

After the loop have finished, by reaching the final time, we plot the simulation results

Pl ot the hei ght
.figure(1)
.plot(t_sol,N array(sol)[:,0])
.title(bounci ng_fnu.get_nane())
.yl abel ("' Height (m")
.xl abel (" Tine (s)')

Pl ot the velocity
.figure(2)
.plot(t_sol,N array(sol)[:,1])
.title(bouncing_fnu.get_name())
.yl abel (' Velocity (m's)")
.xl abel (" Tine (s)')
. show()

and the figure below shows the results.
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Figure5.7. Simulation result
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4.5. Simulation of Co-Simulation FMUs

Simulation of a Co-Simulation FMU follows the same workflow as simulation of a Model Exchange FMU. The
model we would like to smulate is a model of a bouncing ball, the file bounci ngBal | . f mu is located in the
examplesfolder inthe IModelica.orginstallation, pyf mi / exanpl es/ fi | es/ CS1. 0/ . The FMU isaCo-simulation
FMU and in order to ssimulate it, we start by importing the necessary methods and packages into Python:

import pylab as P # For plotting
frompyfm inport load_fnu # For |oading the FMJ

Here, we have imported packages for plotting and the method | oad_f mu which takes as input an FMU and then
determines the type and returns the appropriate class. Now, we need to load the FMU.

model = | oad_fmu(' bounci ngBal | . frmu')

Thenodel object can now be used to interact with the FMU, setting and getting values for instance. A simulation
is performed by invoking the si mul at e method:

res = nodel .sinmulate(final _tinme=2.)

As a Co-Simulation FMU contains its own integrator, the method simulate calls this integrator. Finally, plotting
theresult is done as before:

# Retrieve the result for the variables
h_res res['h']

v_res res['v']

t res['tine']

# Plot the solution

# Plot the hei ght

fig = P.figure()

.clf()

.subplot(2,1,1)

.plot(t, h_res)

.yl abel (' Height (m")

.xl abel (" Tine (s)')

Pl ot the velocity

.subpl ot (2, 1, 2)

plot(t, v_res)

.yl abel (" Vel ocity (m's)")

.xl abel (" Time (s)')
.suptitle(' FM Bouncing Ball")
. show()
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and the figure below shows the results.

Figure 5.8. Smulation result

FMI Bouncing Ball

Height (m)

Time (s)
3,
z
£
2
©
o
g
1.0 15 2.0
Time (s)

39



Chapter 6. Optimization

1. Introduction

JModelica.org supports optimization of dynamic and steady state models. Many engineering problems can be
cast as optimization problems, including optimal control, minimum time problems, optimal design, and model
calibration. These different types of problemswill beillustrated and it will be shown how they can be formulated
and solved. The chapter starts with an introductory example in Section 2, “A first example” and in Section 3,
“Solving optimization problems”, the details of how the optimization algorithms are invoked are explained. The
following sections contain tutorial exercisesthat illustrates how to set up and solve different kinds of optimization
problems.

When formulating optimization problems, models are expressed in the M odelica language, whereas optimization
specificationsare given in the Optimicaextension which isdescribed in Chapter 8, Optimica. Thetutorial exercises
in this chapter assumes that the reader is familiar with the basics of Modelica and Optimica.

2. A first example

In this section, asimple optimal control problem will be solved. Consider the optimal control problem for the Van
der Pol oscillator model:

optim zati on VDP_Opt (objectivelntegrand = x172 + x2"2 + u”2,
startTi me 0,
final Ti me 20)

/] The states
Real x1(start=0,fixed=true);
Real x2(start=1,fixed=true);

/1 The control signal
i nput Real u;

equati on
der (x1)
der (x2)
constrai nt
u<=0. 75;
end VDP_Opt;

(1 - x272) * x1 - x2 + u;
x1;

Create anew file named vDP_pt . nop and save it in you working directory. Notice that this model contains both
the dynamic system to be optimized and the optimization specification. This is possible since Optimica is an
extension of Modelica and thereby supports also Modelica constructs such as variable declarations and equations.
In most cases, however, Modelicamodels are stored separately from the Optimica specifications.

Next, create a Python script file and awrite (or copy paste) the following commands:

# Import the function for transfering a nodel to CasADilnterface
frompyjm inmport transfer_optim zation_problem

# lnmport the plotting library
import matplotlib.pyplot as plt

Next, we transfer the model:

# Transfer the optim zati on problemto casadi
op = transfer_optimzati on_probl en{"VDP_pack. VDP_Opt 2", "VDP_Opt. nop")

The function t r ansf er _opt i m zat i on_pr obl emtransfers the optimization problem into Python and expresses
it'svariables, equations, etc., using the automatic differentiation tool CasADi. This object represents the compiled
model and is used to invoke the optimization algorithm:

res = op.optimze()
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In this case, we use the default settings for the optimization algorithm. The result object can now be used to access
the optimization result:

# Extract variable profiles
xl=res['x1']

x2=res["' x2']

u=res['u']

t=res['tine']

The variable trgjectories are returned as NumPy arrays and can be used for further analysis of the optimization
result or for visualization:

plt.figure(1)
plt.clf()

pl t. subpl ot (311)
plt.plot(t,x1)
plt.grid()
plt.ylabel (' x1")

pl t. subpl ot (312)
plt.plot(t,x2)
plt.grid()
plt.ylabel ('x2")

pl t. subpl ot (313)
plt.plot(t,u)
plt.grid()
plt.ylabel ("u")
plt.xlabel ("time')
pl t.show()

Y ou should now see the optimization result as shown in Figure 6.1, “ Optimal profiles for the VDP oscillator”.

Figure 6.1. Optimal profilesfor the VDP oscillator
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Optimal control and state profiles for the Van Der Pol optimal control problem.

3. Solving optimization problems

The first step when solving an optimization problem is to formulate a model and an optimization specification
and then compile the model as described in the following sections in this chapter. There are currently three dif-
ferent optimization algorithms available in IModelica.org, which are suitable for different classes of optimization
problems.

» Dynamic optimization of DAEsusing direct collocation with CasADi. Thisagorithmisthe default algorithm
for solving optimal control and parameter estimation problems. It isimplemented in Python, uses CasADi for
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computing function derivatives and the nonlinear programming solvers IPOPT or WORHP for solving the
resulting NLP. In terms of functionality, this algorithmis very similar to the deprecated IMU-based algorithm,
but offers significant performance improvements in several regards. Use this method if your model is a DAE
and does not contain discontinuities.

» Derivative free calibration and optimization of ODEs with FM Us. This algorithm solves parameter opti-
mization and model calibration problems and is based on FMUs. The algorithm isimplemented in Python and
relies on aNelder-Mead derivative free optimization algorithm. Use this method if your model is of large scale
and has amodest number of parametersto calibrate and/or contains discontinuities or hybrid elements. Note that
thisalgorithmisapplicable to model swhich have been exported asFM Usal so by other tool sthan IModelica.org.

» Dynamic optimization of DAEs using direct collocation with IMUs (Deprecated in JModelica.org 1.15).
This algorithm is implemented in C, uses CppAD for computing function derivatives and IPOPT for solving
the resulting nonlinear program (NLP).

Toillustrate how to solve optimization problemsthe VVan der Pol problem presented aboveis used. First, the model
istransferred into Python

op = transfer_optim zation_probl en{"VDP_pack. VDP_Opt 2", "VDP_Opt.nop")

All operations that can be performed on the model are available as methods of the op object and
can be accessed by tab completion. Invoking an optimization algorithm is done by calling the method
Opt i mi zat i onProbl em opt i ni ze, which performs the following tasks:

 Sets up the selected algorithm with default or user defined options
¢ Invokes the algorithm to find a numerical solution to the problem
» Writesthe result to afile

» Returns aresult object from which the solution can be retrieved

Theinteractive help for the opt i i ze method is displayed by the command:

>>> hel p(op. optim ze)
Sol ve an optim zati on probl em

Par aneters: :

al gorithm --
The al gorithm which will be used for the optimization is
speci fied by passing the algorithmclass nane as string or
class object in this argunent. 'algorithmi can be any
cl ass which inplenents the abstract class Al gorithnBase
(found in algorithmdrivers.py). In this way it is
possible to wite customalgorithnms and to use themwith this
functi on.

The following algorithnms are avail abl e:

- ' Local DAECol | ocationAl g'. This algorithmis based on
direct collocation on finite el enents and the al gorithm | POPT
is used to obtain a numerical solution to the problem

Defaul t: ' Local DAECol | ocati onAl g'

options --
The options that should be used in the algorithm The options
docunent ati on can be retrieved froman options object:

>>> myModel = Optim zationProblen(...)
>>> opts = nyMdel . optim ze_options()
>>> opts?

Valid val ues are:

- Adict that overrides some or all of the algorithm s default val ues.
An enpty dict will thus give all options with default val ues.

- An Options object for the corresponding algorithm e.g.
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Local DAECol | ocat i onAl gOpti ons for Local DAECol | ocati onAl g.
Default: Enpty dict

Returns: :
A result object, subclass of algorithmdrivers. ResultBase.

The optimize method can be invoked without any arguments, in which case the default optimization algorithm,
with default options, is invoked:

res = vdp.optim ze()

In the remainder of this chapter the available algorithms are described in detail. Options for an algorithm can be
set using the opt i ons argument to the opt i mi ze method. It is convenient to first obtain an options object in order
to access the documentation and default option values. Thisis done by invoking the method opt i i ze_opt i ons:

>>> hel p(op. opti m ze_opti ons)
Returns an instance of the optim ze options class containing options
default values. |If called w thout argument then the options class for
the default optimization algorithmw |l be returned.
Paraneters: :

al gorithm --
The al gorithm for which the options class should be returned.
Possi bl e val ues are: 'Local DAECol | ocati onAl g'.
Defaul t: ' Local DAECol | ocati onAl g'
Returns: :
Options class for the algorithmspecified with default val ues.

The option object isessentialy aPython dictionary and options are set simply by using standard dictionary syntax:

opts = vdp.optim ze_options()
opts['n_e'] =5

The optimization algorithm may then be invoked again with the new options:
res = vdp. optin ze(opti ons=opts)
Available options for each algorithm are documented in their respective sections in this Chapter.

Theopt i nmi ze method returns aresult object containing the optimization result and some meta information about
the solution. The most common operation isto retrieve variabl e trgjectories from the result object:

tine = res['tine']
x1 = res['x1']

Variable datais returned as NumPy arrays. The result object aso contains references to the model that was opti-
mized, the name of the result file that was written to disk, a solver object representing the optimization algorithm
and an options object that was used when solving the optimization problem.

4. Scaling

Many physical models contain variables with values that differ by several orders of magnitude. A typical example
isthermodynamic model s containing pressures, temperatures and mass flows. Such large differencesin scales may
have a severe deteriorating effect on the performance of numerical agorithms, and may in some caseseven lead to
thealgorithm failing. In order to relieve the user from the burden of manually scaling variables, Modelicaoffersthe
nomi nal attribute, which can be used to automatically scale amodel. Consider the Modelica variable declaration:

Real pressure(start=101. 3e3, nom nal =1e5);

Here, the noni nal attribute is used to specify that the variable pressure takes on values which are on the order of
1e5. Inorder to use noni nal attributes for scaling with CasADi-based algorithms, scaling is enabled by setting the
algorithm option vari abl e_scal i ng to True, and is enabled by default . When scaling is enabled, all variables
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with a set nominal attribute are then scaled by dividing the variable value with its nominal value, i.e., from an
algorithm point of view, all variables should take on values closeto one. Noticethat variablestypically vary during
asimulation or optimization and that it is therefore not possible to obtain perfect scaling. In order to ensure that
model equations are fulfilled, each occurrence of avariable is multiplied with its nominal value in equations. For
example, the equation:

T =1(p)
is replaced by the equation
T_scal ed*T_nom = f (p_scal ed*p_nom

whenvari abl e scal i ng isenabled.

The algorithm in Section 5, “Dynamic optimization of DAES using direct collocation with CasADi” also has
support for providing trajectories (obtained by for example simulation) that are used for scaling. This means that
it usualy is not necessary to provide nominal values for all variables, and that it is possible to use time-varying
scaling factors.

For debugging purposes, it is sometimes useful to write a simulation/optimization/initialization result to file
in scaled format, in order to detect if there are some variables which require additional scaling. The option
write_scal ed_resul t hasbeen introduced as an option to theinitialize, si mul at e and opt i ni ze methods
for this purpose.

5. Dynamic optimization of DAEs using direct colloca-
tion with CasADi

5.1. Algorithm overview

The direct collocation method can be used to solve dynamic optimization problems, including optimal control
problems and parameter optimization problems. In the collocation method, the dynamic model variable profiles
are approximated by piecewise polynomials. This method of approximating a differential equation correspondsto
a fixed step implicit Runge-Kutta scheme, where the mesh defines the length of each step. Also, the number of
collocation points in each element, or step, needs to be provided. This number corresponds to the stage order of
the Runge-K utta scheme. The selection of mesh is analogous to the choice of step length in a one-step algorithm
for solving differential equations. Accordingly, the mesh needs to be fine-grained enough to ensure sufficiently
accurate approximation of the differential constraint. For an overview of simultaneous optimization algorithms,
see [2]. The nonlinear programming solvers IPOPT and WORHP can be used to solve the nonlinear program re-
sulting from collocation. The needed first- and second-order derivatives are obtained using CasADi by algorithmic
differentiation.

The NLP solvers require that the model equations are twice continuously differentiable with respect to all of the
variables. This for example means that the model can not contain integer variables or i f clauses depending on
the states.

Optimization models are represented using the class Opt i ni zat i onPr obl em which can be instantiated using the
transfer_optim zati on_pr obl emmethod. An object containing all the options for the optimization algorithm
can be retrieved from the object:

frompyjm inmport transfer_optim zation_problem

op = transfer_optim zation_probl en(cl ass_name, optimnica_file_path)
opts = op.optim ze_options()

opts? # View the hel p text

After options have been set, the options object can be propagated to the opt i m ze method, which solves the
optimization problem:

res = op.optim ze(opti ons=opts)

The standard options for the algorithm are shown in Table 6.1, “ Standard options for the CasADi- and colloca-
tion-based optimization algorithm”. Additional documentation is available in the Python class documentation.

44



Optimization

The agorithm aso has a lot of experimental options, which are not as well tested and some are intended for
debugging purposes. These are shown in Table 6.2, “ Experimental and debugging options for the CasADi- and
collocation-based optimization algorithm”, and caution is advised when changing their default values.

Table 6.1. Standard options for the CasADi- and collocation-based optimization
algorithm

Option Default Description
n_e 50 Number of finite e ements.
hs None Element lengths. Possible values: None, iterable

of floats and "free" None: The element lengths are
uniformly distributed. iterable of floats: Compo-
nent i of the iterable specifies the length of element
i. The lengths must be normalized in the sense that
the sum of all lengths must be equal to 1. "free":
The element lengths become optimization variables
and are optimized according to the algorithm option
free_element_lengths data. WARNING: The "free"
option is very experimental and will not always give
desirable results.

n_cp 3 Number of collocation pointsin each element.

expand_t o_sx "NLP" Whether to expand the CasADi MX graphsto SX
graphs. Possible values: "NLP', "DAE", "no". "NLP":
The entire NLP graph is expanded into SX. This will
lead to high evaluation speed and high memory con-
sumption. "DAE": The DAE, objective and constraint
graphs for the dynamic optimization problem expres-
sions are expanded into SX, but the full NLP graphiis
an MX graph. Thiswill lead to moderate evaluation
speed and moderate memory consumption. "no": All
constructed graphs are MX graphs. Thiswill lead to
low evaluation speed and low memory consumption.

init_traj None Variable trgjectory data used for initialization of the
NLP variables.

noni nal _tr aj None Variable trgjectory data used for scaling of the NLP
variables. Thisoptionis only applicable if variable
scaling is enabled.

bl ocki ng_f actors None (not used) Blocking factors are used to enforce piecewise

constant inputs. The inputs may only change val-

ues at some of the element boundaries. The option

is either None (disabled), given as an instance of
pyjmi.optimization.casadi_collocation.BlockingFactors
or asalist of blocking factors. If the optionsisalist

of blocking factors, then each element in the list spec-
ifies the number of collocation elements for which

all of the inputs must be constant. For example, if
blocking_factors==[2, 2, 1], then the inputs will at-
tain 3 different values (number of elementsin the list),
and it will change values between collocation element
number 2 and 3 as well as number 4 and 5. The sum

of al elementsin the list must be the same as the num-
ber of collocation elements and the length of the list
determines the number of separate values that the in-
puts may attain. See the documentation of the Block-
ingFactors class for how to useiit. If blocking_factors
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Option Default Description

is None, then the usual collocation polynomias arein-
stead used to represent the controls.

external _data None Data used to penalize, constrain or eliminate certain
variables.
del ayed_f eedback None If not None, should be adi ct with mappings

‘del ayed_var': ('undel ayed var', delay_ne).
For each key-value pair, adds the the constraint

that the variable' del ayed_var' equalsthe val-

ue of thevariable' undel ayed_var' delayed by

del ay_ne elements. Theinitia part of the trajectory
for' del ayed_var' isfixedtoitsinitial guessgiven by
theinit_traj optionortheinitial Guess attribute.

' del ayed_var' will typically be an input. Thisisan
experimental feature and is subject to change.

sol ver '1POPT' Specifies the nonlinear programming solver to be used.
Possible choices are 'lPOPT' and 'WORHP'.

| POPT_opti ons IPOPT defaults IPOPT options for solution of NLP. See IPOPT's doc-
umentation for available options.

WORHP_opt i ons WORHP defaults WORHP options for solution of NLP. See WORHP's

documentation for available options.

Table 6.2. Experimental and debugging options for the CasADi- and collocation-based
optimization algorithm

Option Default Description

free_el ement _| engt hs_daNane Data used for optimizing the element lengthsif they
are free. Should be None when hs 1= "free".

di scr 'LGR' Determines the collocation scheme used to discretize
the problem. Possible values: "LG" and "LGR". "LG":
Gauss collocation (Legendre-Gauss) "LGR": Radau
collocation (Legendre-Gauss-Radau).

naned_var s False If enabled, the solver will create a duplicated set of
NL P variables which have names corresponding to the
M odelica/Optimica variable names. Symbolic expres-
sions of the NLP consisting of the named variables
can then be obtained using the get_named_var_expr
method of the collocator class. Thisoptionisonly in-
tended for investigative purposes.

i nit_dual None Dictionary containing vectors of initial guessfor NLP
dual variables. Intended to be obtained as the solu-
tion of an optimization problem which has an identical
structure, which is stored in the dual_opt attribute of
the result object. The dictionary has two keys, 'g' and
X', containing vectors of the corresponding dua vari-
ableintial guesses. Note that when using IPOPT, the
option warm_start_init_point has to be activated for
this option to have an effect.

vari abl e_scal i ng True Whether to scale the variables according to their
nominal values or the trajectories provided with the
nominal_traj option.

equati on_scaling False Whether to scale the equationsin collocated NLP.
Many NLP solvers default to scaling the equations, but
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Option

Default

Description

if it is done through this option the resulting scaling
can be inspected.

nom nal _traj _node

{"_default_mode": "lin-
ear')

Mode for computing scaling factors based on nominal
trajectories. Four possible modes: "attribute”: Time-
invariant, linear scaling based on Nominal attribute
"linear": Time-invariant, linear scaling "affine": Time-
invariant, affine scaling "time-variant": Time-vari-

ant, linear scaling Option is a dictionary with variable
names as keys and corresponding scaling modes as
values. For al variables not occuring in the keys of the
dictionary, the mode specified by the" default_mode"
entry will be used, which by default is"linear".

result_file_nane

Specifies the name of the file where the result is writ-
ten. Setting this option to an empty string resultsin a
default file name that is based on the name of the mod-
el class.

wite_scal ed_result

False

Return the scaled optimization result if set to True,
otherwise return the unscaled optimization result. This
option isonly applicable when variable scaling isen-
abled and is only intended for debugging.

print_condition_nunber

sFalse

Prints the condition numbers of the Jacobian of the
constraints and of the simplified KKT matrix at the
initial and optimal points. Note that thisis only feasi-
ble for very small problems.

resul t_node

‘collocation_points

Specifies the output format of the optimization

result. Possible values: "collocation_points’,
"element_interpolation” and "mesh_poaints'
"collocation_points': The optimization result is giv-
en at the collocation points as well as the start and fi-
na time point. "element_interpolation": The values
of the variable trgjectories are calculated by evaluat-
ing the collocation polynomials. The algorithm option
n_eva_pointsis used to specify the evaluation points
within each finite element. "mesh_points": The opti-
mization result is given at the mesh points.

n_eval _points

20

The number of evaluation points used in each ele-
ment when the algorithm option result_modeis set
to "element_interpolation”. One evaluation point is
placed at each element end-point (hence the option
value must be at least 2) and the rest are distributed
uniformly.

checkpoi nt

False

If checkpoi nt issetto True, transcribed NLPis built
with packed MX functions. Instead of calling the DAE
residual function, the collocation equation function,
and the lagrange term functionn_e * n_cp times, the
check point scheme builds an MxFunct i on evaluating
n_cp collocation points at the same time, so that the
packed MxFunct i on iscalled only n_e times. This ap-
proach improves the code generation and it is expected
to reduce the memory usage for constructing and solv-
ing the NLP.

quadr at ure_constrai nt

True

Whether to use quadrature continuity constraints. This
option is only applicable when using Gauss colloca
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Option Default Description

tion. It isincompatible with eliminate_der_var set to
True. True: Quadrature is used to get the values of the
states at the mesh points. False: The Lagrange basis
polynomials for the state collocation polynomials are
evaluated to get the values of the states at the mesh
points.

mut abl e_external _data |True If true and the ext er nal _dat a option is used, the ex-
ternal data can be changed after discretization, e.g.
during warm starting.

The last standard options, | POPT_opt i ons and WORHP_opt i ons, serve as interfaces for setting options in |POPT
and WORHP. To exemplify the usage of these algorithm options, the maximum number of iterations in IPOPT
can be set using the following syntax:

opts = nodel . optim ze_options()
opts[" 1 POPT_options"]["max_iter"] = 10000

JModelica.org's CasADi based framework does not support simulation and initialization of models. It is recom-
mended to use PyFMI for these purposes instead.

Some statistics from the NLP solver can be obtained by issuing the command
res_opt.get_sol ver_statistics()

The return argument of this function can be found by using the interactive help:

hel p(res_opt.get _sol ver_statistics)
Get nonlinear progranmm ng sol ver statistics.

Ret urns: :

return_status --
Return status from nonlinear progranmm ng sol ver.

nbr _iter --
Nunber of iterations.

obj ective --
Fi nal val ue of objective function.

total exec_tine --
Execution tine.

5.1.1. Reusing the same discretization for several optimization solutions

When collocation is used to solve adynamic optimization problem, the solution procedureis carried out in several
steps:

« Discretize the dynamic optimization problem, which is formulated in continuoustime. Theresultisalarge and
sparse nonlinear program (NLP). The discretization step depends on the options as provided to the opt i ni ze
method.

» Solvethe NLP.
* Postprocess the NL P solution to extract an approximate solution to the original dynamic optimization problem.

Depending on the problem, discretization may account for a substantial amount of the total solution time, or even
dominateit.

The same discretization can be reused for several solutions with different parameter values, but the same op-
tions. Discretization will be carried out each time the opt i ni ze method is called on the model. Instead of calling
model . opt i m ze( opt i ons=opt s), aproblem can be discretized using the pr epar e_opt i mi zat i on method:

sol ver = nodel . prepare_optim zati on(opti ons=opt s)
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Alternatively, the solver can be retrieved from an existing optimization result, assol ver = res. get _sol ver().
Manipulating the solver (e.g. setting parameters) may affect the original optimization problem object and vice
versa,

The obtained solver object represents the discretized problem, and can be used to solveit using itsown opt i i ze
method:

res = solver.optimze()

While options cannot be changed in general, parameter values, initial trajectories, external data, and NLP solver
options can be changed on the solver object. Parameter values can be updated with

sol ver . set (par anet er _nane, val ue)

and current values retrieved with

sol ver . get ( par anet er _nane)

New initial tragjectories can be set with

solver.set _init_traj(init_traj)

whereinit_traj hasthe sameformat as used with theinit _traj option.
External data can be updated with

sol ver.set _external _vari abl e_data(vari abl e_nane, data)

(unlessthe mut abl e_ext er nal _dat a option isturned off). vari abl e_name should correspond to one of the vari-
ables used in the ext er nal _dat a option passed to pr epar e_opt i mi zat i on. dat a should be the new data, in the
same format as variable data used in the ext er nal _dat a option. The kind of external data used for the variable
(eliminated/constrained/quadratic penalty) is not changed.

Settings to the nonlinear solver can be changed with
sol ver. set _sol ver _opti on(sol ver _nane, nane, val ue)

wheresol ver _nane iseg' | POPT' or ' WORHP' .
5.1.2. Warm starting

The solver object obtained from pr epar e_opt i ni zat i on can aso be used for warm starting, where an obtained
optimization solution (including primal and dual variables) isused asthe initial guessfor anew optimization with
new parameter values.

To reusethe solver'slast obtained solution asinitial guess for the next optimization, warm starting can be enabled
with

sol ver.set _warm start (True)

before calling sol ver.optim ze(). This will reuse the last solution for the prima variables (unless
sol ver.set_init_traj wascaledsincethelast sol ver. opti ni ze) aswell asthelast solution for the dual vari-
ables.

When using the IPOPT solver with warm starting, several solver options typically also need to be set to see the
benefits, e g:

def set_warm start_options(sol ver, push=le-4, nu_init=1le-1):

sol ver.set_sol ver _option(' I POPT', 'warmstart_init_point', 'yes')

sol ver.set _sol ver_option('IPOPT', "mu_init', nu_init)

sol ver. set _sol ver _option(' | POPT', 'warm start_bound_push', push)

sol ver.set_sol ver _option(' | POPT', 'warmstart_nult_bound_push', push)
sol ver. set _sol ver _option(' | POPT', 'warm start_bound_frac', push)

sol ver.set _sol ver _option(' I POPT', 'warmstart_slack_bound_frac', push)
sol ver. set _sol ver _option(' |1 POPT', 'warmstart_slack_bound_push', push)
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set _warm start_options(sol ver)

Smaller values of the push and mu arguments will make the solver place more trust in that the sought solution is
closetotheinitia guess, i g, the last solution.

5.2. Examples

5.2.1. Optimal control

This tutoria is based on the Hicks-Ray Continuously Stirred Tank Reactors (CSTR) system. The model was
originally presented in [1]. The system has two states, the concentration, ¢, and the temperature, T. The control
input to the system is the temperature, Tc, of the cooling flow in the reactor jacket. The chemical reaction in the
reactor is exothermic, and also temperature dependent; high temperature resultsin high reaction rate. The CSTR
dynamics are given by:

c(t) -M-ko (t)gEdlvR/T(t)
: dHk
P(e) =g SRR e/ 0+ 2 (Te() -T(1))

Thistutorial will cover the following topics:

» How to solve a DAE initialization problem. The initialization model has equations specifying that all deriva-
tives should be identically zero, which implies that a stationary solution is obtained. Two stationary points,
corresponding to different inputs, are computed. We call the stationary points A and B respectively. Point A
corresponds to operating conditions where the reactor is cold and the reaction rate is low, whereas point B cor-
responds to a higher temperature where the reaction rate is high.

» An optimal control problem is solved where the objective is to transfer the state of the system from stationary
point A to point B. The challengeisto ignite the reactor while avoiding uncontrolled temperature increases. It is
a so demonstrated how to set parameter and variablevaluesinamodel. Moreinformation about the simultaneous
optimization algorithm can be found at IModelica.org APl documentation.

» The optimization result is saved to file and then the important variables are plotted.

The Python commands in this tutorial may be copied and pasted directly into a Python shell, in some cases with
minor modifications. Alternatively, you may copy the commandsinto atext file, e.g., cstr_casadi . py.

Start the tutorial by creating a working directory and copy the file $JMODELI CA_HOVE/ Pyt hon/ pyj mi / exam
pl es/ fil es/ CSTR nop to your working directory. An onlineversion of CSTR. nop isalso available (depending on
which browser you use, you may have to accept the site certificate by clicking through afew steps). If you choose
to create a Python script file, save it to the working directory.

5.2.1.1. Compile and instantiate a model object

The functions and classes used in the tutorial script need to be imported into the Python script. This is done by
the following Python commands. Copy them and paste them either directly into your Python shell or, preferably,
into your Python script file.

i mport nunpy as N
import matplotlib. pyplot as plt

from pynodel i ca i nport conpil e_fnu
frompyfm inport |oad_fnu
frompyjm inmport transfer_optim zation_problem

To solve the initialization problem and simulate the model, we will first compile it as an FMU and load it in
Python. These steps are described in more detail in Section 4.

# Conmpile the stationary initialization nodel into an FMJ
init_frmu = conpile_frnu("CSTR CSTR_ Init", "CSTR nop")

# Load the FMJ
init_nmodel = |oad_fru(init_fmnu)
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At this point, you may open the file CSTR. nop, containing the CSTR model and the static initialization model
used in this section. Study the classes CSTR. CSTRand CSTR. CSTR_| ni t and make sure you understand the models.
Before proceeding, have alook at the interactive help for one of the functions you used:

hel p(conpi | e_f mu)
5.2.1.2. Solve the DAE initialization problem

In the next step, we would like to specify the first operating point, A, by means of a constant input cooling tem-
perature, and then solve the initialization problem assuming that all derivatives are zero.

# Set input for Stationary point A
Tc_0_A = 250
init_nodel.set('Tc', Tc_0_A)

# Solve the initialization problemusing FM
init_nodel.initialize()

# Store stationary point A
[c.OA TOA =init_nodel.get(['c', "T'])

# Print some data for stationary point A
print(' *** Stationary point A ***')
print('Tc = %' % Tc_0_A)

print('c = %' %c_0_A

print(‘T = %' %T_0_A)

Notice how the method set is used to set the value of the control input. The initialization algorithm isinvoked by
caling themethod i ni ti al i ze, which returns aresult object from which theinitialization result can be accessed.
The values of the states corresponding to point A can then be extracted from the result object. Look carefully at
the printouts in the Python shell to see the stationary values. Display the help text for thei ni ti al i ze method and
take amoment to look it through. The procedure is now repeated for operating point B:

# Set inputs for Stationary point B

init_nodel .reset() # reset the FMJ so that we can initialize it again
Tc_0_B = 280

init_nodel.set('Tc', Tc_0_B)

# Solve the initialization problemusing FM
init _nodel.initialize()

# Store stationary point B
[c_O B, T 0B =init_nodel.get(['c', 'T'])

# Print sone data for stationary point B
print(' *** Stationary point B ***')
print('Tc = %' % Tc_0_B)

print('c = %' %c_0_B)

print('"T = %" %T_0_B)

We have now computed two stationary points for the system based on constant control inputs. In the next section,
these will be used to set up an optimal control problem.

5.2.1.2.1. Solving an optimal control problem

The optimal control problem we are about to solveis given by

150
minu(aj (cref-c(6)) 2+ (77 -T(6) )24 (12 - To(6) ) e
0

subject to
230=<u(t)=T.(t)= 370
T(t) <350

and is expressed in Optimicaformat in the class CSTR. CSTR_Opt 2 in the CSTR. nop file above. Have alook at this
class and make sure that you understand how the optimization problem is formulated and what the objectiveis.
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Direct collocation methods often require good initial guesses in order to ensure robust convergence. Also, if the
problem is non-convex, initialization is even more critical. Since initial guesses are needed for all discretized
variables along the optimization interval, simulation provides a convenient means to generate state and derivative
profiles given an initial guess for the control input(s). It is then convenient to set up a dedicated model for com-
putation of initial trgjectories. In the model CSTR. CSTR I ni t _Opti ni zat i on in the CSTR. nop file, a step input
is applied to the system in order obtain an initial guess. Notice that the variable names in the initialization model
must match those in the optimal control model.

First, compile the model and set model parameters:

# Conpile the optim zation initialization nodel
init_simfm = conpile_frmu("CSTR CSTR Init_Optim zation", "CSTR nop")

# Load the nodel
init_simnodel = load _fru(init_simfnu)

# Set initial and reference val ues
init_simnodel.set('cstr.c_init', c_0_A)
init_simnodel.set('cstr.T_init', T 0_A)
init_simnodel.set('c_ref', c_0_B)
init_simnodel.set('T_ref', T_0_B)
init_simnodel.set('Tc_ref', Tc_0_B)

Having initialized the model parameters, we can simulate the model using the si nul at e function.

# Sinulate with constant input Tc
init_res = init_simnodel.simulate(start_tine=0., final_tinme=150.)

The method si mul at e first computes consistent initial conditions and then simulates the model in the interval 0
to 150 seconds. Take a moment to read the interactive help for the si nul at e method.

The simulation result object is returned. Python dictionary access can be used to retrieve the variable trajectories.

# Extract variable profiles
t_init_sim=init_res['tinme']
c_init_sim=init_res['cstr.c']
T init_sim=init_res['cstr.T]
Tc_init_sim=init_res['cstr.Tc']

# Plot the initial guess trajectories
plt.close(l)

plt.figure(l)

pl t. hol d(True)

plt.subplot(3, 1, 1)

plt.plot(t_init_sim c_init_sim

plt.grid()

pl t.yl abel (* Concentration')

plt.title('Initial guess obtained by sinulation')

plt.subplot(3, 1, 2)
plt.plot(t_init_sim T_init_sim
plt.grid()

pl t.yl abel (* Tenperature')

plt.subplot(3, 1, 3)
plt.plot(t_init_sim Tc_init_sim
plt.grid()

plt.yl abel (* Cooling tenperature')
plt.xlabel ("time')

pl t.show()
L ook at the plots and try to relate the trgjectories to the optimal control problem. Why isthisagood initial guess?
Once theinitial guessis generated, we compile the optimal control problem:

# Conpile and | oad optim zati on probl em
op = transfer_optini zati on_probl en{" CSTR. CSTR _Opt 2", "CSTR. nop")
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We will now initialize the parameters of the model so that their values correspond to the optimization objective
of transferring the system state from operating point A to operating point B. Accordingly, we set the parameters
representing the initial values of the states to point A and the reference values in the cost function to point B:

# Set reference val ues
op.set('Tc_ref', Tc_0_B)
op.set('c_ref', float(c_0_B))
op.set('T_ref', float(T_0_B))

# Set initial values
op.set('cstr.c_init', float(c_0_A))
op.set('cstr.T_init', float(T_0_A))

We will also set some optimization options. In this case, we decrease the number of finite elements in the mesh
from 50 to 19, to be able to illustrate that simulation and optimization might not give the exact sameresult. Thisis
done by setting the corresponding option and providing it as an argument to the opt i m ze method. We also lower
the tolerance of IPOPT to get a more accurate result. We are now ready to solve the actual optimization problem.
Thisis done by invoking the method opt i ni ze:

# Set options

opt _opts = op.optin ze_options()
opt_opts['n_e'] = 19 # Nunber of elenents
opt_opts['init_traj'] = init_res
opt_opts['nomnal _traj'] =init_res

opt _opts['IPOPT_options']['tol'] = le-10

# Sol ve the optimal control problem
res = op.optin ze(opti ons=opt_opt s)

You should see the output of IPOPT in the Python shell as the algorithm iterates to find the optimal solution.
IPOPT should terminate with amessage like 'Optimal solution found' or 'Solved to acceptable level' in order for an
optimum to have been found. The optimization result object isreturned and the optimization dataarestoredinr es.

We can now retrieve the trajectories of the variables that we intend to plot:

# Extract variable profiles
c_res =res['cstr.c']

Tres =res['cstr.T]
Tc_res = res['cstr.Tc']
time_res =res['tine']
c_ref =res['c_ref']

Tref =res['T_ ref']

Tc_ref = res['Tc_ref']

Finally, we plot the result using the functions available in matplotlib:

# Plot the results

plt.close(2)

plt.figure(2)

pl t. hol d( True)

plt.subplot(3, 1, 1)
plt.plot(time_res, c_res)
plt.plot(tine_res, c_ref, '--")
plt.grid()

pl t.yl abel (' Concentration')
plt.title('Optimzed trajectories')

plt.subplot(3, 1, 2)
plt.plot(tine_res, T_res)
plt.plot(tine_res, T ref, '--")
plt.grid()

plt.yl abel (' Tenperature')

plt.subplot(3, 1, 3)
plt.plot(tine_res, Tc_res)
plt.plot(tine_res, Tc_ref, '--')
plt.grid()

plt.yl abel (' Cooling tenperature')
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plt.xlabel ("tinme')
plt.show)

Y ou should now see the plot shown in Figure 6.2, “Optimal profiles for the CSTR problem.”.

Figure 6.2. Optimal profilesfor the CSTR problem.
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Take aminute to analyze the optimal profiles and to answer the following questions:
1. Why isthe concentration high in the beginning of the interval?

2. Why isthe input cooling temperature high in the beginning of the interval ?
5.2.1.3. Verify optimal control solution

Solving optimal control problems by means of direct collocation implies that the differential equation is approxi-
mated by atime-discrete counterpart. The accuracy of the solution is dependent on the method of collocation and
the number of elements. In order to assess the accuracy of the discretization, we may simulate the system using the
optimal control profile asinput. With this approach, the state profiles are computed with high accuracy and the re-
sult may then be compared with the profiles resulting from optimization. Notice that this procedure does not verify
the optimality of the resulting optimal control profiles, but only the accuracy of the discretization of the dynamics.

We start by compiling and loading the model used for simulation:

# Conpi | e nodel
simfmu = conpil e_fm("CSTR CSTR', "CSTR npp")

# Load nodel
si m nodel = | oad_fnmu(si mfnu)

The solution obtained from the optimization are values at afinite number of time points, in this case the collocation
points. The CasADi framework also supports obtaining al the collocation polynomials for all the input variables
in the form of a function instead, which can be used during simulation for greater accuracy. We obtain it from
the result object in the following manner.

# Get optimzed input
(_, opt_input) = res.get_opt_input()

We specify theinitia values and simulate using the optimal trajectory:

# Set initial values
simnodel .set('c_init', c_0_A)

simnodel .set('T_init', T_0_A)

# Sinul ate using optim zed input
simopts = simunodel.simlate_options()
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simopts[' CVode_options']['rtol"] le-6

simopts[' CVode_options']["'atol "] le-8

res = simnodel .sinmulate(start_tine=0., final_time=150.,
input=('Tc', opt_input), options=simopts)

Finally, we load the simulated data and plot it to compare with the optimized trajectories:

# Extract variable profiles
c_sinFres['c']

T simrres[' T']

Tc_sinFres[' Tc']
time_sim=res['tine']

# Plot the results

plt.figure(3)

plt.clf()

pl t. hol d( True)

pl t. subpl ot (311)
plt.plot(tine_res,c_res,'--")
plt.plot(tine_simc_sim
plt.legend( (' optimzed ,'sinmulated))
plt.grid()

plt.yl abel (' Concentration')

pl t. subpl ot (312)
plt.plot(tine_res, T res,"'--")
plt.plot(time_simT_sim
plt.legend(('optim zed',"'simulated'))
plt.grid()

pl t.yl abel (' Tenperature')

pl t. subpl ot (313)

plt.plot(time_res, Tc_res,'--")
plt.plot(tine_simTc_sim
plt.legend((' optimzed ,'sinulated'))
plt.grid()

plt.yl abel (' Cooling tenperature')
plt.xlabel ("tinme')

plt.show()

Y ou should now see the plot shown in Figure 6.3, “ Optimal control profiles and simulated trajectories correspond-
ing to the optimal control input.”.

Figure 6.3. Optimal control profiles and simulated trajectories corresponding to the
optimal control input.
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Discuss why the simulated trajectories differ from their optimized counterparts.
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5.2.1.4. Exercises
After completing the tutorial you may continue to modify the optimization problem and study the results.
1. Removethe constraint on cst r. T. What is then the maximum temperature?

2. Play around with weights in the cost function. What happensif you penalize the control variable with alarger
weight? Do a parameter sweep for the control variable weight and plot the optimal profilesin the same figure.

3. Add terminal constraints (cstr. T(fi nal Ti me) =sonePar anet er ) for the states so that they are equal to point
B at the end of the optimization interval. Now reduce the length of the optimization interval. How short can
you make theinterval ?

4. Try varying the number of elementsin the mesh and the number of collocation pointsin each interval.
5.2.1.5. References

[1] G.A. Hicks and W.H. Ray. Approximation Methods for Optimal Control Synthesis. Can. J. Chem. Eng.,
40:522-529, 1971.

[2] Bieger, L., A. Cervantes, and A. Wachter (2002): "Advancesin simultaneous strategies for dynamic optimiza-
tion." Chemical Engineering Science, 57, pp. 575-593.

5.2.2. Minimum time problems

Minimum time problems are dynamic optimization problems where not only the control inputs are optimized,
but also the final time. Typically, elements of such problemsinclude initial and terminal state constraints and an
objective function where the transition time is minimized. The following example will be used to illustrate how
minimum time problems are formulated in Optimica. We consider the optimization problem:

mint
ue)

subject to the Van der Pol dynamics:

X = (1-x3)xy-xp+u, x1(0)=0

X, =Xx1, X(0)=1

and the constraints:

xi(tr) =0, xp(tf)=0

-l<su(t) <1

This problem is encoded in the following Optimica specification:

optimzation VDP_Opt_Mn_Tinme (objective = final Ti ne,
startTine = 0,
final Ti me(free=true, m n=0. 2,initial Guess=1))

[/ The states
Real x1(start
Real x2(start

0, fi xed=true);
1, fixed=true);

/1 The control signal
i nput Real u(free=true, m n=-1, max=1);

equati on
// Dynami c equations
der(x1) = (1 - x272) * x1 - x2 + u;
der (x2) = x1;

constrai nt
/] term nal constraints
x1(final Ti ne)=0;
x2(final Ti me) =0;

end VDP_Opt_M n_Ti ne;
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Notice how the class attribute fi nal Ti ne is set to be free in the optimization. The problem is solved by the
following Python script:

# Inport numerical libraries
i mport nunmpy as N
import matplotlib. pyplot as plt

# |l nmport the JMbdelica.org Python packages

from pynodel i ca i nport conpil e_fnu

frompyfm inport |oad_fmu

frompyjm inmport transfer_optim zation_problem

vdp
res

= transfer_optim zation_problen("VDP_Opt_M n_Ti ne", "VDP_Opt_M n_Ti me. nop")
= vdp. optim ze()

# Extract variable profiles

xl=res['x1']

x2=res['x2"]

u=res['u']

t=res['tine']

# Pl ot
plt.figure(l)
plt.clf()

plt. subpl ot (311)
plt.plot(t,x1)
plt.grid()
plt.ylabel (' x1')

pl t. subpl ot (312)
plt.plot(t,x2)
plt.grid()
plt.ylabel ('x2")

pl t. subpl ot (313)
plt.plot(t,u,'x-")
plt.grid()
plt.ylabel ("u")
plt.xlabel ("tinme'")
pl t.show()

The resulting control and state profiles are shown in Figure 6.4, “Minimum time profiles for the Van der Pol
Oscillator.”. Notice the difference as compared to Figure Figure 6.1, “Optimal profiles for the VDP oscillator”,
where the Van der Pol oscillator system is optimized using a quadratic objective function.

Figure 6.4. Minimum time profilesfor the Van der Pol Oscillator.
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5.2.3. Optimization under delay constraints

In some applications, it can be useful to solve dynamic optimization problems that include time delays in the
model. Collocation based optimization schemes are well suited to handle thiskind of models, since the whole state
trajectory is available at the same time. The direct collocation method using CasADi contains an experimental
implementation of such delays, which we will describe with an example. Please note that the implementation of
this feature is experimental and subject to change.

We consider the optimization problem

1
131(%1!(4){(0& u(t)i+ u(t)j) dt

subject to the dynamics

KO =u,(0) 2u()
up(t)=uy(t 'tdelay)

and the boundary conditions

x(0)=1
x(1)=0
u,(t)=0.25,t <tdelay

The effect of positive u; isinitially to increase x, but after atime delay of time tqej,y, it comes back with twice
the effect in the negative direction through u,,.

We model everything except the delay constraint in the Optimica specification

optim zation Del ayTest(startTime = 0, final Tine = 1,
obj ectivel ntegrand = 4*x"2 + ul”"2 + u2/2)
i nput Real ul, u2
Real x(start = 1, fixed=true);
equati on
der(x) = ul - 2*u2
constrai nt
x(final Tine) = 0;
end Del ayTest ;

The problem is then solved in the following Python script. Notice how the delay constraint is added using the
del ayed_f eedback option, and theinitial part of u, is set using thei ni ti al Guess éttribute:

# lnmport nunerical libraries

i mport nunpy as np
import matplotlib.pyplot as plt

# I nport JModelica.org Python packages
frompyjm inmport transfer_optim zation_problem

n_e = 20
delay_n_e =5
horizon = 1.0
del ay = horizon*delay_n_e/n_e

# Conpile and | oad optim zati on probl em

opt = transfer_optim zation_probl em("Del ayTest", "Del ayedFeedbackOpt. nop")

# Set value for u2(t) when t < del ay
opt.getVariable('u2').setAttribute('initial Guess', 0.25)
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# Set al gorithm options

opts = opt.optim ze_options()

opts['n_e'] = n_e

# Set del ayed feedback fromul to u2

opts[' del ayed_feedback'] = {'u2': ('ul', delay_n_e)}

# Optimze
res = opt.optimnm ze(opti ons=opts)

# Extract variable profiles
x_res = res['x']
ul res = res['ul']

u2_res = res['u2']
time_res = res['tine']

# Pl
plt.
plt.
plt.
plt.
plt.
plt.

ot results

plot(time_res, x_res, tine_res, ul_res, tinme_res, u2_res)
hol d( Tr ue)

plot (ti ne_res+delay, ul res, '--')

hol d( Fal se)

legend(('x", "ul', 'u2', 'delay(ul)'))

show()

Theresulting control and state profiles are shown in Figure 6.5, “ Optimization result for delayed feedback exam-

ple.”

. Notice that x grows initially since u; is set positive to exploit the greater control gain that appears delayed

through u,. Attime 1 -tgelay, the delayed value of u; ceasesto influence x within the horizon, and u; immediately

switches sign to drive down x to itsfinal valuex(1) = 0.

Figure 6.5. Optimization result for delayed feedback example.
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5.2.4. Parameter estimation

Inthistutoria it will be demonstrated how to solve parameter estimation problems. We consider a quadruple tank

system depicted in Figure 6.6, “ A schematic picture of the quadruple tank process.”.
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Figure 6.6. A schematic picture of the quadruple tank process.
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The dynamics of the system are given by the differential equations:

SN Sy W Syl

Xy = -3 \29%q + 7 \20%3 + 4 Uy
k

. -2 9y T2

Xy = - 7\29%0 + 7\ 20X4 + U

. as (rgke
X3 = -7 \29%3 + 4, Uy

. ay o (1
Xy = - N20% +7 7, Uy
Where the nominal parameter values are given in Table 6.3, “Parameters for the quadruple tank process.”.

Table 6.3. Parametersfor the quadruple tank process.

Parameter name Value Unit
A 49 cm?
aj 0.03 cm?
i 0.56 cm?v-ist
# 0.3 vem?t

The states of the model are the tank water levels x1, x2, x3, and x4. The control inputs, ul and u2, are the flows
generated by the two pumps.

The Modelicamodel for the systemislocated in QuadTankPack.mop. Download the fileto your working directory
and open it in atext editor. Locate the class QuadTankPack. QuadTank and make sure you understand the model.
In particular, notice that all model variables and parameters are expressed in Sl units.

Measurement data, availablein gt _par _est _dat a. mat , has been logged in an identification experiment. Down-
load also thisfile to your working directory.

Open atext file and nameit qt _par _est _casadi . py. Then enter the imports:

i mport os
fromcollections inport O deredD ct

from scipy.io.matlab. m o inport | oadmat
import matplotlib. pyplot as plt
i mport nunpy as N
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from pynodel i ca i mport conpile_fnu

frompyfm inport |oad_fnu

frompyjm inport transfer_optim zati on_probl em

from pyjm.optimzation.casadi _coll ocation inport External Data

into the file. Next, we compile the model, which is used for simulation, and the optimization problem, which is
used for estimating parameter values. We will take a closer ook at the optimization formulation later, so do not
worry about that one for the moment. The initial states for the experiment are stored in the optimization problem,
which we propagate to the model for simulation.

# Conpile and | oad FMJ, which is used for sinulation
nmodel = | oad_frmu(conpil e_fmu(' QuadTankPack. QuadTank', "QuadTankPack. mop"))

# Transfer problemto CasAD |Interface, which is used for estinmation
op = transfer_optim zati on_probl en{" QadTankPack. QuadTank_Par Est CasADi ",
"QuadTankPack. nop")

# Set initial states in nmodel, which are stored in the optim zation problem
x_0_nanes = ['x1_0', '"x2_0', 'x3_0", 'x4 0']

x_0_val ues = op. get (x_0_nanes)

nmodel . set (x_0_nanes, x_0_val ues)

Next, we enter code to open the datafile, extract the measurement time series and plot the measurements:

# Load neasurenent data fromfile
data = | oadmat ("qt_par_est_data. mat", appendmat =Fal se)

# Extract data series
t_meas = data['t'][6000::100, 0] - 60

yl neas = data['yl f'][6000::100, 0] / 100
y2 _meas = data['y2 f'][6000::100, 0] / 100
y3_neas = data['y3_d'][6000::100, 0] / 100
y4 _meas = data['y4 d'][6000::100, 0] / 100

ul = data['ul_d'][6000::100, O]
u2 = data['u2_d'][6000::100, O]

# Pl ot nmeasurenents and inputs
plt.close(l)
plt.figure(l)
plt.subplot(2, 2, 1)
plt.plot(t_neas, y3_neas)
plt.title('x3")
plt.grid()

plt.subplot(2, 2, 2)
plt.plot(t_neas, y4 neas)
plt.title('x4")
plt.grid()

plt.subplot(2, 2, 3)
plt.plot(t_neas, yl neas)
plt.title('x1")
plt.xlabel ("t[s]"')
plt.grid()

plt.subplot(2, 2, 4)
plt.plot(t_neas, y2_neas)
plt.title('x2")
plt.xlabel ("t[s]")
plt.grid()

plt.close(2)
plt.figure(2)
plt.subplot(2, 1, 1)
plt.plot(t_meas, ul)
pl t. hol d( True)
plt.title(' ul")
plt.grid()
plt.subplot(2, 1, 2)
plt.plot(t_neas, u2)
plt.title('u2")
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x|l abel ("t[s]")
hol d( Tr ue)
grid()

show()

plt.
plt.
plt.
plt.

Y ou should now see two plots showing the measurement state profiles and the control input profiles similar to
Figure 6.7, “Measured state profiles.” and Figure 6.8, “Control inputs used in the identification experiment.”.

Figure6.7. Measured state profiles.
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Figure 6.8. Control inputsused in the identification experiment.
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In order to evaluate the accuracy of nominal model parameter values, we simulate the model using the same
initial state and inputs values as in the performed experiment used to obtain the measurement data. First, a matrix
containing the input trajectoriesiis created:

# Build input trajectory matrix for use in sinulation
u N. transpose(N. vstack([t_meas, ul, u2]))

Now, the model can be simulated:

# Simul ate nodel response with nom nal
res_sim = nodel . simulate(input=(["'ul",
start_tinme=0.,

par anet er val ues
‘u2'], u),
final _time=60.)
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The simulation result can now be extracted:

# Load simul ation result
x1 sim=res_sinf'x1l']
X2_sim= res_sinf'x2"]
x3_sim=res_sin]'x3"]
X4_sim= res_sinf'x4"]
t_sim =res_sin'tinme']
ul sim=res_sinf'ul']
u2_sim= res_sinf'u2']

and then plotted:

# Plot simulation result
plt.figure(l)
plt.subplot(2, 2, 1)
plt.plot(t_sim x3_sim
plt.subplot(2, 2, 2)
plt.plot(t_sim x4_sim
plt.subplot(2, 2, 3)
plt.plot(t_sim x1_sim
plt.subplot(2, 2, 4)
plt.plot(t_sim x2_sin

plt.figure(2)

plt.subplot(2, 1, 1)
plt.plot(t_sim ul sim 'r")
plt.subplot(2, 1, 2)
plt.plot(t_sim u2_sim 'r'")
plt.show()

Figure 6.9, “ Simulation result for the nominal model.” shows the result of the simulation.

Figure 6.9. Simulation result for the nominal model.
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Here, the simulated profiles are given by the green curves. Clearly, thereis a mismatch in the response, especially
for the two lower tanks. Think about why the model does not match the data, i.e., which parameters may have
wrong values.

The next step towards solving a parameter estimation problem isto identify which parametersto tune. Typically,
parameterswhich are not known precisely are selected. Also, the selected parameters need of course affect themis-
match between model response and data, when tuned. In afirst attempt, we aim at decreasing the mismatch for the
two lower tanks, and thereforewe sel ect thelower tank outflow areas, al and a2, as parametersto optimize. The Op-
timicaspecification for the estimation problemiscontained in the class QuadTankPack. QuadTank_Par Est CasADi :

optim zati on QuadTank_Par Est CasADi (start Ti me=0, fi nal Ti me=60)
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extends QuadTank(x1(fixed=true), x1_0=0.06255,
x2(fixed=true), x2_0=0.06045,
x3(fixed=true), x3_0=0.02395,
x4(fixed=true), x4_0=0.02325,
al(free=true, mn=0, max=0.1le-4),
a2(free=true, mn=0, max=0.1le-4));

end QuadTank_Par Est CasADi ;

We have specified the time horizon to be one minute, which matches the length of the experiment, and that we
want to estimate al and a2 by setting f r ee=t r ue for them. Unlike optimal control, the cost functionis not specified
using Optimica. Thisisinstead specified from Python, using the Ext er nal Dat a class and the code below.

# Create external data object for optinization
Q= Ndiag([1l., 1., 10., 10.])
data_x1 = N vstack([t_neas, yl_neas])

data x2 = N vstack([t_neas, y2_neas])
data_ul = N.vstack([t_neas, ul])
data_u2 = N vstack([t_neas, u2])

quad_pen = OrderedDict ()
quad_pen['x1'] = data_x1
quad_pen[ ' x2'] data_x2
quad_pen[ ' ul'] data_ul
quad_pen[ ' u2'] data_u2
external _data = External Dat a( @Q, quad_pen=quad_pen)

Thiswill create an objective which isthe integral of the squared difference between the measured profiles for x1
and x2 and the corresponding model profiles. We will also introduce corresponding penalties for the two input
variables, which are | eft as optimization variables. It would also have been possibleto eliminate theinput variables
from the estimation problem by using the el i ni nat ed parameter of Ext er nal Dat a. See the documentation of
Ext er nal Dat a for how to do this. Finally, we use a square matrix Q to weight the different components of the
objective. We choose larger weights for the inputs, as we have larger faith in those values.

We are now ready to solve the optimization problem. We first set some options, where we specify the number of
elements (time-discretization grid), the external data, and also provide the simulation with the nominal parameter
valuesasaninitia guessfor the solution, which is also used to scale the variablesinstead of the variables nominal
attributes (if they have any):

# Set optim zation options and optim ze

opts = op.optim ze_options()

opts['n_e'] = 60 # Nunber of collocation el enents
opts['external data'] = external data

opts['init_traj'] =res_sim

opts['nom nal _traj'] = res_sim

res = op.optimn ze(options=opts) # Sol ve estinmati on probl em

Now, let's extract the optimal values of the parameters al and a2 and print them to the console:
# Extract estimated val ues of paraneters

al opt =res.initial("al")
a2_opt res.initial("a2")

# Print estimated paraneter val ues
print('al: ' + str(al_opt*le4) + 'cm2')
print('a2: ' + str(a2_opt*led4) + 'cm2')

Y ou should get an output similar to:

al: 0.0266¢cnM2
a2: 0.0271cm2

The estimated values are dlightly smaller than the nominal values - think about why this may be the case. Also
note that the estimated values do not necessarily correspond to the physically true values. Rather, the parameter
values are adjusted to compensate for al kinds of modeling errors in order to minimize the mismatch between
model response and measurement data.
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Next we plot the optimized profiles:

# Load state profiles

x1_opt = res["x1"]
x2_opt = res["x2"]
x3_opt = res["x3"]
x4_opt = res["x4"]
ul_opt = res["ul"]
u2_opt = res["u2"]
t_opt = res["tine"]

# Plot estimated trajectories
plt.figure(l)

plt.subplot(2, 2, 1)
plt.plot(t_opt, x3_ opt, 'k')
plt.subplot(2, 2, 2)
plt.plot(t_opt, x4 _opt, 'k')
plt.subplot(2, 2, 3)
plt.plot(t_opt, x1_opt, 'k')
plt.subplot(2, 2, 4)
plt.plot(t_opt, x2_opt, 'k')

plt.figure(2)

plt.subplot(2, 1, 1)
plt.plot(t_opt, ul_opt, 'k')
plt.subplot(2, 1, 2)
plt.plot(t_opt, u2_opt, 'k')
pl t.show()

Y ou will seethe plot shown in Figure 6.10, “ State profiles corresponding to estimated values of al and a2.”.

Figure 6.10. State profiles corresponding to estimated values of al and a2.
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The profiles corresponding to the estimated values of al and a2 are shown in black curves. As can be seen, the
match between the model response and the measurement data has been significantly improved. Is the behavior of
the model consistent with the estimated parameter values?

Nevertheless, there is still a mismatch for the upper tanks, especially for tank 4. In order to improve the match, a
second estimation problem may be formulated, where the parameters al, a2, a3, a4 are free optimization variables,
and where the squared errors of all four tank levels are penalized. Do this as an exercise!

5.3. Investigating optimization progress

This section describes sometoolsthat can be used to investigate the progress of the nonlinear programming solver
on an optimization problem. This information can be useful when debugging convergence problems; some of it
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(e.g. dual variables) may also be useful to gain a better understanding of the properties of an optimization problem.
To make sense of theinformation that can be retrieved, wefirst give an overview of the collocation procedure that
transcribes the optimization problem into a Nonlinear Program (NLP).

Methods for inspecting progress are divided into low level and high level methods, where the low level methods
provide details of the underlying NL P whilethe high level methods are oriented towards the optimization problem
as seen in the model formulation.

All functionality related to inspection of solver progressis exposed through the solver object as returned through
the pr epar e_opt i ni zat i on method. If the optimization has been done through the opt i m ze method instead,
the solver can be obtained asin

res = nodel . optim ze(options=opts)
sol ver = res. get_sol ver()

5.3.1. Collocation

To be able to solve a dynamic optimization problem, it is first discretized through collocation. Time is divided
into elements (time intervals), and time varying variables are approximated by alow order polynomial over each
element. Each polynomial pieceisdescribed by sample values at a number of collocation points (default 3) within
the element. The result is that each time varying variable in the model is instantiated into one NLP variable for
each collocation point within each element. Some variables may also need to be instantiated at additional points,
such astheinitia point which istypically not a collocation point.

The equationsin amodel are divided intoinitial equations, DAE equations, path constraints and point constraints.
These equations are also instantiated at different time points to become constraints in the NLP. Initial equations
and point constraints areinstantiated only once. DAE equations and path constraints are instantiated at collocation
point of each element and possibly some additional points.

When using the methods described below, each model equation is referred to as a pair (eqt ype, eqind). The
string eqt ype may be either initial ', dae',' path_eq',"' path_ineq',' point_eq' ,Or ' point_ineq .The
equationindex eqi nd givestheindex withinthe given equation type, and isanonnegativeinteger |essthan the num-
ber of equations within the type. The symbolic model equations corresponding to given pairs (eqt ype, egqi nd)
can be retrieved through the get _equat i ons method:

eq = sol ver. get _equati ons(eqtype, 0) # first equation of type eqtype
eqgs = sol ver.get _equations(eqtype, [1,3]) # second and fourth equation
all _eqs = sol ver. get _equati ons(eqtype) # all equations of the given type

Apart from the model equations, collocation may also instantiate additional kinds of constraints, such as continuity
constraints to enforce continuity of states between elements and collocation constraints to prescribe the coupling
between states and their derivatives. These constraints have their own eqt ype strings. A list of al equation types
that are used in agiven model can be retrieved using

eqtypes = sol ver.get_constraint_types()
5.3.2. Inspecting residuals

Given a potentia solution to the NLP, the residual of a constraint is a humber that specifies how close it is to
being satisfied. For equalities, the residual must be (close to) zero for the solution to be feasible. For inequalities,
the residual must be in a specified range, typically nonpositive. The constraint violation is zero if the residual is
within bounds, and gives the signed distance to the closest bound otherwise; for equality constraints, this is the
same as the residual. Methods for returning residuals actualy return the violation by default, but have an option
to get the raw residual .

For afeasible solution, all violations are (almost) zero. If an optimization converges to an infeasible point or does
not have time to converge to a feasible one then the residuals show which constraints the NL P solver was unable
to satisfy. If one problematic constraint comes into conflict with a number of constraints, all of them will likely
have nonzero violations.

Residual values for a given equation type can be retrieved as a function of time through
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r = sol ver.get_residual s(eqtype)

where r isan array of residuals of shape (n_ti mepoi nts, n_equations). There are aso optional arguments:
i nds gives a subset of equation indices (e.g. i nds=[ 0, 1]), poi nt specifies whether to evaluate residuals at the
optimization solution (poi nt =" opt ', default) or the initial point (poi nt="init'), and r aw specifies whether to
return constraint violations (r aw=Fal se, default) or raw residuals (r an=Tr ue).

The corresponding time points can be retrieved with
t, i, k = solver.get_constrai nt_poi nts(eqtype)

wheret , i, and k are vectors that give the time, element index, and collocation point index for each instantiation.

To get an overview of which residuals are the largest,

sol ver. get _resi dual _norns()

returns alist of equation types sorted by descending residual norm, and

sol ver . get _resi dual _norns(eqtype)
returns alist of equation indices of the given type sorted by residual norm.

By default, the methods above work with the unscaled residuals that result directly from collocation. If the
equat i on_scal i ng option is turned on, the constraints will be rescaled before they are sent to the NLP solver.
It might be of more interest to look at the size of the scaled residuals, since these are what the NLP solver will
try to make small. The above methods can then be made to work with the scaled residualsinstead of the unscaled
by use of the scal ed=True keyword argument. The residual scale factors can aso be retrieved in analogy to
sol ver. get _resi dual s through

scal es = sol ver. get _resi dual _scal es(eqtype)

and an overview of the residual scale factors (or inverse scale factors with i nv=Tr ue) can be gained from

sol ver. get _residual _scal e_normns()
5.3.3. Inspecting the constraint Jacobian

When solving the collocated NL P, the NLP solver typically has to evaluate the Jacobian of the constraint residual
functions. Convergence problems can sometimes be related to numerical problems with the constraint Jacobian.
In particular, I popt will never consider a potential solution if there are nonfinite (infinity or not-a-number) entries
in the Jacobian. If the Jacobian has such entries at the initial guess, the optimizer will give up completely.

The constraint Jacobian comes from the NLP. As seen from the original model, it contains the derivatives of the
model equations (and also e.g. the collocation equations) with respect to the model variables at different time
points. If oneor several problematic entriesarefound in the Jacobian, it is often helpful to know the model equation
and variable that they correspond to.

The set of (model equation, model variable) pairs that correspond to nonfinite entries in the constraint Jacobian
can be printed with

sol ver.print_nonfinite_jacobian_entries()
or returned with

entries = solver.find_nonfinite_jacobian_entries()

There are also methods to allow to make more custom analyses of this kind. To instead list all Jacobian entries
with an absolute value greater than 10, one can use

J = solver.get_nlp_jacobian() # Get the raw NLP constrai nt Jacobi an as a (sparse) scipy.csc_matrix

# Find the indices of all entries with absolute value > 10
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J.data = abs(J.data) > 10
c_inds, xx_inds = N nonzero(J)

entries = solver.get_nodel jacobian_entries(c_inds, xx_inds) # Map the indices to equations and vari abl es
sol ver. print_jacobian_entries(entries) # Print them

To get the Jacobian with residual scaling applied, usethe scal ed_r esi dual s=Tr ue option.

5.3.4. Inspecting dual variables

Many NLP solvers (including Ipopt) produce a solution that consists of not only the primal variables (the actual
NLP variables), but a'so one dual variable for each constraint in the NLP. Upon convergence, the value of each
dual variable givesthe changein the optimal objective per unit changein theresidual. Thus, the dual variables can
give an idea of which constraints are most hindering when it comesto achieving alower objective value, however,
they must be interpreted in relation to how much it might be possible to change any given constraint.

Dual variable values for a given equation type can be retrieved as a function of time through
d = sol ver. get_constraint_dual s(eqtype)

in analogy to sol ver.get_residuals. TO get constraint duals for the equation scaled problem, use the
scal ed=Tr ue keyword argument. Just aswithget _r esi dual s, the corresponding time points can beretrieved with

t, i, k = solver.get_constrai nt_poi nts(eqtype)

Besides regular constraints, the NLP can also contain upper and lower bounds on variables. These will correspond
to the Modelica mi n and max attributes for instantiated model variables. The dual variables for the bounds on a
given model variable var can be retrieved as a function of time through

d = sol ver. get _bound_dual s(var)

The corresponding time points can be retrieved with

t, i, k = solver.get_variabl e_poi nts(var)

5.3.5. Inspecting low level information about NLP solver progress

The methods described above generally hide the actual collocated NLP and only require to work with model
variables and equations, instantiated at different points. There also exist lower level methods that expose the
NLP level information and its mapping to the original model more directly, and may be useful for more custom

applications. These include

* get_nlp_variabl es, get _nl p_resi dual s, get_nl p_bound_dual s, and get _nl p_constrai nt _dual s to get
raw vectors from the NLP solution.

e get_nl p_vari abl e_bounds andget _nl p_r esi dual _bounds to get the corresponding boundsusedinthe NLP.
* get_nl p_residual _scal es to get the raw residual scale factors.

e get_nl p_variabl e_i ndi ces and get _nl p_constrai nt _i ndi ces to get mappings from model variables and
equations to their NLP counterparts.

* get_point _ti me to get thetimes of collocation points(i, k).

e get _nodel _vari abl es and get _nodel _const rai nts to map from NLP variables and constraints to the cor-
responding model variables and equations.

The low level constraint Jacobian methods get _nl p_j acobi an, get _nodel _j acobi an_entries, and the
print_j acobi an_ent ri es method have aready been covered in the section about jacobians above.

See the docstring for the respective method for more information.
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6. Derivative-Free Model Calibration of FMUs

Figure 6.11. The Furuta pendulum.

This tutorial demonstrates how to solve a model calibration problem using an algorithm that can be applied to
Functional Mock-up Units. The model to be calibrated is the Furuta pendulum shown in Figure 6.11, “ The Furuta
pendulum.” . The Furuta pendulum consists of an arm rotating in the horizontal plane and a pendulum whichisfree
torotateinthevertical plane. The construction hastwo degrees of freedom, the angle of thearm, ¢, and the angle of
the pendulum, 6. Copy the file $JMODELI CA_HOVE/ Pyt hon/ pyj mi / exanpl es/ fi | es/ FMUs/ Fur ut a. f mu to your
working directory. Note that the Furuta.fmu fileis currently only supported on Windows. Measurement data
for ¢ and 6 is available in the file $JMODELI CA_HOVE/ Pyt hon/ pyj mi / exanpl es/ fi | es/ Fur ut aDat a. mat . Copy
thisfile to your working directory as well. These measurements will be used for the calibration. Open atext file,
nameit f ur ut a_par _est . py and enter the following imports:

fromscipy.io.matlab. mi o i nport | oadmat
import matplotlib.pyplot as plt

i mport nunpy as N

frompyfm inport |oad_fnu
frompyjm.optinization inmport dfo

Then, enter code for opening the data file and extracting the measurement time series:

# Load neasurenment data fromfile

data = | oadmat (' Furut aDat a. mat ' , appendmat =Fal se)
# Extract data series

t_neas = data['tine'][:,0]

phi _neas = data['phi'][:, 0]

theta_nmeas = data['theta'][:, 0]

Now, plot the measurements:

# Pl ot measurenents

plt.figure (1)

plt.clf()

plt.subplot(2,1,1)

plt.plot(t_neas,theta_neas, | abel = Measurenents')
plt.title('theta [rad]"')

plt.l egend(l oc=1)

plt.grid ()

plt.subplot(2,1,2)

plt.pl ot (t_neas, phi _nmeas, | abel =' Measurenents')
plt.title('phi [rad]')

plt.l egend(l oc=1)

plt.grid ()

plt.show ()
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This code should generate Figure 6.12, “Measurements of 6 and ¢ for the Furuta pendulum.” showing the mea-
surements of 6 and ¢.

Figure 6.12. Measurementsof 8 and ¢ for the Furuta pendulum.
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To investigate the accuracy of the nominal parameter values in the model, we shall now simulate the model:

# Load nodel

model = | oad_fmu("Furuta.fm")

# Simul ate nodel response with nom nal paraneters
res = nodel .simulate(start_tinme=0.,final _tinme=40)
# Load sinulation result

phi _sim = res[' armloi nt. phi']

theta_sim= res[' pendul umloi nt. phi']
t_sim=res['tine']

Then, we plot the simulation result:

# Plot sinulation result

plt.figure (1)

plt.subplot(2,1,1)

plt.plot(t_simtheta_sim'--"',l|abel="Simulation nom nal paraneters')
plt.l egend(l oc=1)

pl t.subplot(2,1,2)

plt.plot(t_simphi_sim'--"',label="Sinulation nom nal paraneters')
plt.xlabel ("t [s]")

plt.l egend(l oc=1)

pl t.show ()

Figure 6.13, “Measurements and model simulation result for ¢ and 8 when using nominal parameter valuesin the
Furuta pendulum model.” shows the simulation result together with the measurements.
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Figure 6.13. M easurements and model simulation result for ¢ and 6 when using nominal
parameter valuesin the Furuta pendulum model.

theta [rad]

— Measurements
= -+ Simulation nominal parameters

i i i i i
0 5 10 15 30 35 40

20
phi [rad]

T T
— Measurements
=+ Simulation nominal parameters

0 5 10 15 20 25 30 35 40
t[s]

As can be seen, the simulation result does not quite agree with the measurements. We shall now attempt to calibrate
the model by estimating the two following model parameters:

* Cam: armfriction coefficient (nhominal value 0.012)

* Cpend: PENdulum friction coefficient (nominal value 0.002)

The calibration will be performed using the Nelder-Mead simplex optimization algorithm. The objective function,
i.e. the function to be minimized, is defined as:

M M

F@ =3 (¢ 0 — o™ @)+ D (™ (6, x) — = 1))’

i=1 i=1

T
wheret, i =1,2,...M, are the measurement time points and [arm  Cpend]" is the parameter vector. @meas and 6™

are the measurements of ¢ and 6, respectively, and ¢sim and 6°'™ are the corresponding simulation results. Now,
add code defining a starting point for the algorithm (use the nominal parameter values) aswell as lower and upper
bounds for the parameters:

# Choose starting point

x0 = N array([0.012,0.002])*1e3

# Choose | ower and upper bounds (optional)
I'b N. zeros (2)

ub (x0 + le-2)*1e3

Note that the values are scaled with a factor 10°. Thisis done to get a more appropriate variable size for the al-
gorithm to work with. After the optimization is done, the obtained result is scaled back again. In this calibration
problem, we shall use multiprocessing, i.e., parallel execution of multiple processes. All objective function evalu-
ationsin the optimization al gorithm will be performed in separate processesin order to save memory and time. To
be able to do this we need to define the objective function in a separate Python file and provide the optimization
algorithm with the file name. Open a new text file, nameit f ur ut a_cost . py and enter the following imports:

frompyfm inport |oad_fmu
frompyjm.optimzation inport dfo
fromscipy.io.natlab. m o inport |oadmat
i mport nunpy as N

Then, enter code for opening the data file and extracting the measurement time series:
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# Load neasurenent data fromfile

data = | oadmat (' Furut aDat a. mat' , appendmat =Fal se)
# Extract data series

t_neas = data['tine'][:,0]

phi _meas = data['phi'][:, 0]

theta_nmeas = data['theta'][:, 0]

Next, define the objective function, it is important that the objective function has the same name as thefileit is
defined in (except for . py):

# Define the objective function
def furuta_cost(x):
# Scal e down the inputs x since they are scal ed up
# versions of the parameters (x = 1e3*[ parant, paran?])
arnfricti onCoefficient = x[0]/1e3
pendul unfrictionCoefficient = x[1]/1e3
# Load nodel
model = load_fmu('../Furuta.fm')
# Set new paraneter values into the nodel
nmodel . set (" arnfriction',arnfricti onCoefficient)
nmodel . set (' pendul unfriction', pendul unfricti onCoeffici ent)
# Simul ate nodel response with new paraneter val ues
res = nodel .sinmulate(start_tine=0.,final _tine=40)
# Load sinulation result
phi _sim = res['armJoi nt. phi"']
theta_sim = res[' pendul umloi nt. phi']
t_ sim=res['time']
# Eval uate the objective function
y_nmeas = N. vstack((phi _neas ,theta_neas))
y_sim= N vstack((phi _simtheta_sim)
obj = dfo.quad_err(t_neas,y_neas,t_simy_sim
return obj

This function will later be evaluated in temporary sub-directories to your working directory which is why the
string ' .. /' is added to the FMU name, it means that the FMU is located in the parent directory. The Python
function df o. quad_er r evaluatesthe objective function. Now we can finally perform the actual calibration. Solve
the optimization problem by calling the Python function df o. f ni n inthe file named f ur ut a_par _est . py:

# Sol ve the probl em using the Nel der-Mead sinplex al gorithm
x_opt,f_opt,nbr_iters, nbr_fevals,solve_tine = dfo.fm n("furuta_cost. py",
xst art =x0, | b=l b, ub=ub, al g=1, nbr _cores=4, x_tol =le-3,f _tol =le-2)

The input argument al g specifies which algorithm to be used, al g=1 means that the Nelder-Mead simplex algo-
rithm is used. The number of processor cores (nbr _cor es) on the computer used must also be provided when
multiprocessing is applied. Now print the optimal parameter values and the optimal function value:

# Optimal point (don't forget to scal e down)

[arnfrictionCoefficient_opt, pendul unfrictionCoefficient_opt] = x_opt/1e3
# Print optimal paraneter val ues and optimal function val ue

print 'Optinmal paranmeter val ues:'

print "armfriction coeff ="' + str(arnfrictionCoefficient_opt)
print 'pendulumfriction coeff ="' + str(pendul unfrictionCoefficient_opt)
print 'Optinal function value: ' + str(f_opt)

This should give something like the following printout:

Opti mal paraneter val ues:

armfriction coeff = 0.00997223923413
pendul um friction coeff = 0.000994473020199
Optimal function value: 1.09943830585

Then, we set the optimized parameter values into the model and simulate it:

# Load nodel

model = | oad_fmu("Furuta.fm")

# Set optimal paraneter val ues into the nodel

nmodel . set (" arnfriction',arnfricti onCoefficient_opt)

nmodel . set (' pendul unfriction', pendul unfri cti onCoeffici ent_opt)
# Sinmul ate nodel response with optimal paraneter val ues
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res = nodel .sinmulate(start_tine=0.,final _tine=40)
# Load sinulation result

phi _opt = res['armloi nt. phi']

theta_opt = res['pendul umloi nt. phi']

t_opt =res['time']

Finally, we plot the simulation result:

# Plot sinulation result

plt.figure (1)

plt.subplot(2,1,1)
plt.plot(t_opt,theta_opt,'-.",|inew dth=3,
| abel =" Si mul ati on optinal paraneters')
plt.legend(l oc=1)

plt.subplot(2,1,2)
plt.plot(t_opt,phi_opt,'-.",linew dt h=3,
| abel =" Si nul ati on optinal paraneters')
plt.l egend(l oc=1)

plt.show ()

This should generate the Figure 6.14, “Measurements and model simulation results for ¢ and 6 with nominal and
optimal parametersin the model of the Furuta pendulum.”. As can be seen, the agreement between the measure-
ments and the simulation result has improved considerably. The model has been successfully calibrated.

Figure 6.14. Measurements and model simulation results for ¢ and 6 with nominal and
optimal parametersin the model of the Furuta pendulum.
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Chapter 7. Graphical User Interface
for Visualization of Results

1. Plot GUI

JModelica.org comeswith agraphical user interface (GUI) for displaying simulation and / or optimization results.
The GUI supports result files generated by JModelica.org and Dymola (both binary and textual formats).

The GUI islocated in the module ( pyj ni / pyf ni ) . common. pl ot ti ng. pl ot _gui and can be started by Windows
users by selecting the shortcut located in the start-menu under IModelica.org. The GUI can also be started by
typing the following commands in a Python shell:

from pyj m .common. plotting inmport plot_gui # or pyfm .comon.plotting inport plot_gui
pl ot _gui.startGU ()

Note that the GUI requires the Python package wxPython.

Figure 7.1. Overview of JModelica.org Plot GUI
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1.1. Introduction

An overview of the GUI isshown in Figure 7.1, “ Overview of IModelica.org Plot GUI”. As can be seen, the plot
figures are located to the right and can contain multiple figures in various configurations. The |eft is dedicated to
show the loaded result file(s) and corresponding variablestogether with optionsfor filtering time-varying variables
and parameters/constants.

Loading aresult file is done using the Fi | e menu selection Open which opens afile dialog where either textual
(.txt) results or binary (.mat) results can be chosen. Theresult isthen loaded into atree structure which enablesthe
user to easily browse between components in amodel, see Figure 7.2, “A result file has been loaded.” . Multiple
results can be loaded either simultaneously or separately by using the Fi | e menu option Open repeatedly.
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Figure 7.2. A result file has been loaded.
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Displaying trajectoriesis done by simply checking the box associated with the variable of interest, see Figure 7.3,
“Plotting atrajectory.”. Removing atrajectory follows the same principle.

Figure 7.3. Plotting a trajectory.
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A result can aso be removed from the tree view by selecting an item in the tree and by pressing the delete key.
1.2. Edit Options

The GUI allows arange of options, see Figure 7.4, “Figure Options.”, related to how the trajectories are displayed
such as line width, color and draw style. Information about a plot can in addition be defined by setting titles and
labels. Options related to the figure can be found under the Edi t menu as well as adding more plot figures.

75



Graphical User Interface
for Visualization of Results

Figure 7.4. Figure Options.
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Under Axi s/ Label s, see Figure 7.5, “Figure Axis and Labels Options.”, options such as defining titles and labels
in both X and Y direction can be found together with axis options.

Figure7.5. Figure Axisand L abels Options.
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Under Li nes/ Legends, options for specifying specific line labels and line styles can be found, see Figure 7.6,
“FigureLinesand Legendsoptions.”. Thetop drop-down list containsall variablesrelated to the highlighted figure
and the following input fields down to Legend are related to the chosen variable. The changes take effect after the
button ok has been pressed. For changing multiple linesin the same session, the Appl y button should be used.
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Figure 7.6. FigureLinesand L egends options.
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Additional figures can be added from the Add Pl ot command in the Edi t menu. In Figure 7.7, “An additional
plot has been added.” an additional figure have been added.

Figure7.7. An additional plot has been added.
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Thefigures can be positioned by choosing afigure tab and moving it to one of the borders of the GUI. In Figure 7.8,
“Moving Plot Figure.” "Plot 1" have been dragged to the left side of the figure and a highlighted area has emerged
which shows where "Plot 1" will be positioned. In Figure 7.9, “GUI after moving the plot window.” the result
is shown.
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Figure 7.8. Moving Plot Figure.
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Figure 7.9. GUI after moving the plot window.
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If we are to add more figures, an increasingly complex figure layout can be created as is shown in Figure 7.10,
“Complex Figure Layout.” where figures also have been dragged to other figure headers.

78



Graphical User Interface
for Visualization of Results

Figure 7.10. Complex Figure Layout.
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1.3. View Options

Options for interacting with a figure and changing the display can be found under the vi ew menu. The options
are to show/hide a grid, either to use the mouse to move the plot or to use the mouse for zooming and finaly to
resize the plot to fit the selected variables.

Figure7.11. Figure View Options.
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Moving afigurewith themove optionisperformed by simply pressing the left mouse button and while still holding
down the button, dragging the plot to the area of interest. A zoom operation is performed in a similar fashion.

1.4. Example

Figure 7.12, “Multiple figure example.” shows an example of how the GUI can be used to plot four different plots
with different labels. Some of the lines have also been modified in width and in line style. A grid is also shown.
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Figure 7.12. Multiple figure example.
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Chapter 8. Optimica

In this chapter, the Optimica extension will be presented and informally defined. The Optimica extension in de-
scribed in detail in [Jak2008a], where additional motivations for introducing Optimica can be found. The presen-
tation will be made using the following dynamic optimization problem, based on a double integrator system, as
an example:

mint
o !

subject to the dynamic constraint

x(t)=v(t) , x(t)=0
v(t)=u(t) , v(t)=0

and

v(tr)=0 x(tf)=1
1<u(t)<-1 v(t)<05

In this problem, thefinal time, tf, isfree, and the objective isthusto minimize the timeit takes to transfer the state
of the double integrator from the point (0,0) to (1,0), while respecting bounds on the velocity v(t) and the input
u(t). A Modelicamodel for the double integrator systemis given by:

nmodel Doubl el nt egr at or
Real x(start=0);
Real v(start=0);
i nput Real u;

equati on
der (x) =v;
der (v) =u;

end Doubl el nt egrat or;

In summary, the Optimica extension consists of the following elements:
* A new specialized class: opt i mi zati on
» New attributes for the built-in type Redl: free andi ni ti al Guess

* A new function for accessing the value of avariable at a specified time instant

Class attributes for the specialized classopt i mi zat i on: obj ective, startTi me, final Time andstatic
* A new section: constrai nt

* Inequality constraints

1. A new specialized class: optimization

A new specialized class, called opt i ni zat i on, in which the proposed Optimica-specific constructs are valid is
supported by Optimica. This approach is consistent with the Modelica language, since there are already several
other specialized classes, e.g., record, functi on and nodel . By introducing a new specialized class, it also be-
comes straightforward to check the validity of a program, since the Optimica-specific constructs are only valid in-
sideanopti ni zat i on class. Theopt i mi zat i on class corresponds to an optimization problem, static or dynamic,
as specified above. Apart from the Optimica-specific constructs, an opt i mi zat i on class can also contain compo-
nent and variable declarations, local classes, and equations.

It is not possible to declare components from opt i ni zat i on classes in the current version of Optimica. Rather,
the underlying assumption is that an opt i ni zati on class defines an optimization problem, that is solved off-
line. An interesting extension would, however, be to alow for opti ni zati on classes to be instantiated. With
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this extension, it would be possible to solve optimization problems, on-line, during ssimulation. A particularly
interesting application of thisfeature is model predictive control, which is acontrol strategy that involves on-line
solution of optimization problems during execution.

As a starting-point for the formulation of the optimization problem consider the opt i ni zat i on class:

optim zation DI M nTine
Doubl el nt egrat or di;
input Real u = di.u;
end DI M nTi ne;

This class contains only one component representing the dynamic system model, but will be extended in the
following to incorporate also the other elements of the optimization problem.

2. Attributes for the built in class Real

In order to superimpose information on variable declarations, two new attributes are introduced for the built-in
type Real. Firstly, it should be possible to specify that avariable, or parameter, isfreein the optimization. Modelica
parameters are normally considered to be fixed after the initialization step, but in the case of optimization, some
parameters may rather be considered to be free. In optimal control formulations, the control inputs should be
marked as free, to indicate that they are indeed optimization variables. For these reasons, a new attribute for the
built-in type Redl, f r ee, of boolean type isintroduced. By default, this attributeis setto f al se.

Secondly, an attribute, i ni ti al Guess, isintroduced to enable the user to provide aninitial guessfor variablesand
parameters. In the case of free optimization parameters, thei ni ti al Guess attribute provides an initial guessto
the optimization algorithm for the corresponding parameter. In the case of variables, thei ni ti al Guess attribute
is used to provide the numerical solver with aninitial guessfor the entire optimization interval. Thisisparticularly
important if asimultaneous or multiple-shooting algorithm is used, since these algorithms introduce optimization
variables corresponding to the values of variables at discrete points over theinterval. Note that such initial guesses
may be needed both for control and state variables. For such variables, however, the proposed strategy for pro-
viding initial guesses may sometimes be inadequate. In some cases, a better solution is to use simulation data
to initialize the optimization problem. This approach is also supported by the Optimica compiler. In the double
integrator example, the control variable u is afree optimization variable, and accordingly, thef r ee attributeis set
totrue. Also, theini ti al Guess attributeis set to 0.0.

optim zation DI M nTine
Doubl el nt egrat or di (u(free=true,
initial Guess=0.0));
input Real u = di.u;
end DI M nTi ne;

3. A Function for accessing instant values of a vari-
able

An important component of some dynamic optimization problems, in particular parameter estimation problems
where measurement data is available, is variable access at discrete time instants. For example, if a measurement
data value, y;, has been obtained at time t;, it may be desirable to penalize the deviation between y; and a corre-
sponding variable in the model, evaluated at the time instant t;. In Modelica, it is not possible to access the value
of avariable at a particular time instant in a natural way, and a new construct therefore has to be introduced.

All variablesin Modelicaare functionsof time. Thevariability of variables may be different-someare continuously
changing, whereas others can change value only at discrete timeinstants, and yet others are constant. Nevertheless,
the value of a Modelica variable is defined for al time instants within the ssmulation, or optimization, interval.
The time argument of variables are not written explicitly in Modelica, however. One option for enabling access
to variable values at specified time instants is therefore to associate an implicitly defined function with avariable
declaration. This function can then be invoked by the standard Modelica syntax for function calls, y(t _i ). The
name of the function isidentical to the name of the variable, and it has one argument; the time instant at which the
variableisevauated. Thissyntax isalso very natural sinceit corresponds precisely to the mathematical notation of
afunction. Notethat the proposed syntax y(t _i ) makestheinterpretation of such an expression context dependent.
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In order for thisconstruct to bevalid in standard Modelica, y must refer to afunction declaration. With the proposed
extension, y may refer either to a function declaration or a variable declaration. A compiler therefore needs to
classify an expressiony(t _i ) based on the context, i.e., what function and variable declarations are visible. This
feature of Optimicais used in the constraint section of the double integrator example, and is described below.

4. Class attributes

In the optimization formulation above, there are elements that occur only once, i.e.,, the cost function and the
optimization interval. These elements are intrinsic properties of the respective optimization formulations, and
should be specified, once, by the user. In this respect the cost function and optimization interval differ from, for
example, constraints, since the user may specify zero, one or more of the latter.

In order to encode these elements, class attributes are introduced. A class attribute is an intrinsic element of a
specialized class, and may be modified in a class declaration without the need to explicitly extend from a built-
in class. In the Optimica extension, four class attributes are introduced for the specialized class opt i mi zat i on.
These are obj ect i ve, which defines the cost function, st art Ti me, which defines the start of the optimization
interval, f i nal Ti me, which defines the end of the optimization interval, and st at i ¢, which indicates whether the
class defines a static or dynamic optimization problem. The proposed syntax for class attributes is shown in the
following opt i mi zat i on class:

optim zation DI M nTine (
obj ecti ve=fi nal Ti ne,
start Ti ne=0,
final Time(free=true,initial Guess=1))
Doubl el nt egrator di (u(free=true,
initial Guess=0.0));
input Real u = di.u;
end DI M nTi ne;

The default value of the class attribute st at i ¢ isf al se, and accordingly, it does not have to be set in thiscase. In
essence, the keyword ext ends and the reference to the built-in class have been eliminated, and the modification
construct is instead given directly after the name of the class itself. The class attributes may be accessed and
modified in the same way as if they were inherited.

5. Constraints

Constraints are similar to equations, and in fact, a path equality constraint is equivalent to a Modelica equation.
But in addition, inequality constraints, aswell as point equality and inequality constraints should be supported. Itis
therefore natural to have a separation between equations and constraints. In Modelica, initial equations, equations,
and algorithms are specified in separate sections, within a class body. A reasonable alternative for specifying
constraintsisthereforeto introduce anew kind of section, const r ai nt . Constraint sectionsareonly allowedinside
anopti m zat i on class, and may contain equality, inequality aswell as point constraints. In the double integrator
example, there are several constraints. Apart from the constraints specifying bounds on the control input u and
the velacity v, there are also terminal constraints. The latter are conveniently expressed using the mechanism for
accessing the value of avariable at a particular time instant; di . x(fi nal Ti me) =1 and di . v(fi nal Ti ne) =0. In
addition, boundsmay haveto be specified for thef i nal Ti ne classattribute. Theresulting optimization formulation
may now be written:;

optim zation DI M nTime (
obj ecti ve=fi nal Ti ne,
start Ti ne=0,
final Time(free=true,initial Guess=1))
Doubl el nt egrat or di (u(free=true,
initial Guess=0.0));
input Real u = di.u;
constrai nt
final Ti me>=0.5;
final Ti me<=10;
di . x(final Ti me)=1;
di . v(final Ti me) =0;
di . v<=0. 5;
di.u>=-1; di.u<=1;
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end DI M nTi ne;

The Optimica specification can be translated into executable format and solved by a numerical solver, yielding
the result seen in Figure 8.1, “ Optimization result”.

Figure8.1. Optimization result
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Chapter 9. Abstract syntax tree
access

1. Tutorial on Abstract Syntax Trees (ASTS)
1.1. About Abstract Syntax Trees

A fundamental data structure in most compilersisthe Abstract Syntax Tree (AST). An AST serves as an abstract
representation of a computer program and is often used in a compiler to perform analyses (e.g., binding namesto
declarations and checking type correctness of a program) and as a basis for code generation.

Three different ASTs are used in the IModelica.org front-ends.

e The source AST results from parsing of the Modelica or Optimica source code. This AST shares the structure
of the source code, and consists of ahierarchy consisting of Java objects corresponding to class and component
declarations, equations and algorithms. The source AST can also be used for unparsing, i.e., pretty printing of
the source code.

» Theinstance AST represents a particular model instance. Typically, the user selects a class to instantiate, and
the compiler then computes the corresponding instance AST. Theinstance AST differsfrom the source AST in
that in the former case, all components are expanded down to variables of primitive type. An important feature
of the instance AST isthat it is used to represent modification environments; merging of modifications takes
place in the instance AST. As a consequence, all analysis, such as name and type analysis takes is done based
ontheinstance AST.

e Theflat AST represents the flat Modelica model. Once the instance AST has been computed, the flat AST is
computed simply by traversing theinstance AST and collecting all variables of primitivetype, all equationsand
al algorithms. The flat AST isthen used, after some transformations, as a basis for code generation.

For more information on how the JIModelica.org compiler transforms these ASTSs, see the paper "I mplementation
of aModelica compiler using JastAdd attribute grammars' by JAkesson et. al.

This tutorial demonstrates how the Python interface to the three different ASTs in the compiler can be used. The
JPype package is used to create Java objects in a Java Virtual Machine which is seamlessly integrated with the
Python shell. The Java objects can be accessed interactively and methods of the object can be invoked.

For more information about the Java classes and their methods used in this example, please consult the API docu-
mentation for the M odelicacompiler. Note however that the documentation for the compiler front-endsis still very
rudimentary. Also, the interfaces to the source and instance AST will be made more user friendly in upcoming
Versions.

Three different usages of ASTs are shown:

» Count the number of classesin the Modelica standard library. In this example, a Python function is defined to
traverse the source AST which results from parsing of the Modelica standard library.

* Instantiate the CauerL owPassAnalog model. Theinstance AST for thismodel isdumped and it is demonstrated
how the merged modification environments can be accessed. Also, it is shown how a component redeclaration
affects the instance tree.

* Flatten the CauerL owPassAnalog model instance and print some statistics of the flattened Model.

The Python commands in this tutorial may be copied and pasted directly into a Python shell, in some cases
with minor modifications. You are, however, strongly encouraged to copy the commands into a text file, e.g.,
ast _exanpl e. py.

Start the tutorial by creating a working directory and copy the file $JMODELI CA HOVE/ Pyt hon/
pyj mi / exanpl es/ fi | es/ Cauer LowPassAnal og. o to your working directory. An on-line version of

85



Abstract syntax tree access

Cauer LowPassAnal og. no is also available (depending on which browser you use, you may have to ac-
cept the site certificate by clicking through a few steps). If you choose to create Python script file,
save it to the working directory. The tutorial is based on a model from the Modelica Standard Library:
Model i ca. El ectri cal . Anal og. Basi c. Exanpl es. Cauer LowPassAnal og.

1.2. Load the Modelica standard library

Before we can start working with the ASTs, we need to import the Python packages that will be used

# lmport library for path nanipul ations
i mport os. path

# I nmport the JMddelica.org Python packages
i nport pynodel i ca
from pynodel i ca. conpi | er _w appers inport MdelicaConpil er

# lmport nunerical libraries
import nunpy as N

import ctypes as ct

import matplotlib. pyplot as plt

# I mport JPype
i mport j pype

# Create a reference to the java package 'org
org = jpype.JPackage('org')

Also, we need to create an instance of a Modelica compiler in order to compile models:

# Create a conpiler and conpiler target object
nc = Model i caConpi | er ()

# Build trees as if for an FMU for ME v 1.0
target = nt.create_target_object("nme", "1.0")

In order to avoid parsing the same file multiple times (we will not change the Modelica file in this tutorial), we
will check the variable sour ce_r oot existsin the shell before we parse the file Cauer LowPassAnal og. no:

# Don't parse the file if it has already been parsed
try:
sour ce_r oot . get Progr anRoot ()
except :
# Parse the file CauerLowPassAnal og. n0 and get the root node
# of the source AST
source_root = nt. parse_nodel (" Cauer LowPassAnal og. nbo")

At this paint, try the built-in help feature of Python by typing the following command in the shell to see the help
text for the function you just used.

In [2]: hel p(nt. parse_nodel )

Inthefirst part of thetutorial, wewill not work with thefilter model, but rather load the Modelica standard library.
Again, we check if the library has already been loaded:

# Don't |load the standard library if it is already |oaded
try:
nodel i ca. get Name() . get | D()
except NanmeError, e
# Load the Modelica standard |ibrary and get the class
# decl arati on AST node correspondi ng to the Mdelica
# package
nmodel i ca = source_root. get Progran().getLi bNode(0). \
get St or edDef i ni ti on() . get El enent (0)

The means to access the node in the source AST corresponding to the class (package) declaration of the Modelica
library is somewhat cumbersome; the source AST interface will be improved in later versions.
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1.3. Count the number of classes in the Modelica standard library

Having accessed a node in the source AST, we may how perform analysis by traversing the tree. Say that we are
interested in counting the number of classes (packages, models, blocks, functions etc.) in the Modelica standard
library. Asthebasisfor traversing the AST, we may use the method d assDecl . cl asses() that returnsan iterator
over local classes contained in a class. Based on this method, a Python function for traversing the class hierarchy
of the source AST can be defined:

def count_cl asses(cl ass_decl , depth):
Count the nunber of classes hierarchically contained
in a class declaration."""
# Get an iterator over of |ocal classes using the nmethod O assDecl . cl asses()
# which returns a Java Iterabl e object over C assDecl objects
| ocal _cl asses = cl ass_decl.classes().iterator()

num cl asses = 0

# Loop over all local classes
whi | e | ocal _cl asses. hasNext () :
# Call count_classes recursively for all |ocal classes

# (including the contained class itself)
num cl asses += 1 + count_cl asses(| ocal _cl asses. next(), depth + 1)

# If the class declaration corresponds to a package, print
# the nunber of hierarchically contained cl asses
if class_decl.isPackage() and depth <=1
print("The package % has % hierachically contained classes" \
% cl ass_decl . qual i fi edNane(), num cl asses))

# Return the nunber of hierachically contained cl asses
return num cl asses

We then call the function:

# Call count_classes for 'Mbdelica
num cl asses = count _cl asses(nobdel i ca, 0)

Now run the script and study the printoutsin the Python shell. Thefirst timethe script isrun, you will see printouts
corresponding also to the compiler accessing individual files of the Modelica standard library; the loading of the
library is done on demand as the library classes are actually accessed. Run the script once again (using the '-i'
switch), to get a cleaner output, which should now look similar to:

The package Model i ca. UsersGui de has 39 hierachically contained classes
The package Model i ca. Bl ocks has 343 hierachically contained cl asses

The package Model i ca. Conpl exBl ocks has 44 hierachically contained classes
The package Model i ca. St at eGraph has 66 hierachically contained cl asses
The package Modelica. El ectrical has 992 hierachically contained classes
The package Model i ca. Magnetic has 174 hierachically contained cl asses
The package Model i ca. Mechani cs has 558 hierachical ly contained cl asses
The package Model i ca. Fluid has 687 hierachically contained cl asses

The package Model i ca. Medi a has 1791 hi erachically contained cl asses

The package Model i ca. Thermal has 95 hierachically contained classes

The package Model i ca. Math has 166 hi erachically contained cl asses

The package Model i ca. Conpl exMath has 31 hierachically contained cl asses
The package Modelica.Uilities has 97 hierachically contained classes
The package Model i ca. Constants has 0 hierachically contained cl asses
The package Modelica.lcons has 32 hierachically contained cl asses

The package Modelica. Slunits has 584 hierachically contained classes
The package Model i ca has 5715 hi erachically contained cl asses

Take sometimeto ponder the results and make sure that you understand how the Python function count _cl asses
works and which Python variables corresponds to references into the source AST.

1.4. Dump the instance AST

We shall now turn our attention to the CauerL owPassAnalog model. Specifically, we would like to analyze the
instance hierarchy of the model by dumping the tree structure to the Python shell. In addition, we will ook at the
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merged modification environment of each instance AST node. Again, we will use methods defined for the Java
objects representing the AST.

First we create an instance of the CauerLowPassAnalog filter. Again we only create the instance if it has not
already been created:

# Don't instantiate if instance has been conputed al ready
try:
filter_instance. conponents()
except :
# Retrieve the node in the instance tree corresponding to the class
# Mbdel i ca. El ectri cal . Anal og. Exanpl es. Cauer LowPassAnal og
filter_instance = nt.instantiate_nodel (source_root, " Cauer LowPassAnal og", target)

Next we define a Python function for traversing theinstance AST and printing each nodein the shell. We a so print
the merged modification environment for each instance node. In order to traverse the AST, we use the methods
I nst Node. i nst Conponent Decl Li st () and | nst Node. i nst Ext endsLi st (), which both return an object of the
classLi st, whichin turn contain instantiated component declarations and instantiated extends clauses. By invok-
ing thedunp_i nst _ast function recursively for each element in theselists, theinstance AST isin effect traversed.
Dueto the internal representation of the instance AST, nodes of typeI nst Pri mi ti ve, corresponding to primitive
variables, are not leaves in the AST as would be expected. To overcome this complication, we simply check if a
nodeisof typel nst Prinitive, andif thisisthe case, the recursion stops.

The environment of an instance node is accessed by calling the method | nst Node. get Mer gedEnvri onmrent () ,
which returnsalist of modifications. According to the Modelica specification, outer modifications overridesinner
modifications, and accordingly, modificationsin the beginning of the list has precedence over later modifications.

def dunp_inst_ast (i nst_node, indent):
"""Pretty print an instance node, including its nerged environent."""

# Get the nerged environnent of an instance node
env = inst_node. get Mer gedEnvi r onnent ()

# Create a string containing the type and nane of the instance node
str = indent + inst_node.prettyPrint("")
str = str + " {"

# Loop over all elements in the merged nodification environment
for i in range(env.size()):
str = str + env.get(i).toString()
if i<env.size()-1:
str = str + ", "
str = str + "}"

# Print
print(str)

# Get all components and dunp them recursively
conponents = inst_node. i nst Conponent Decl Li st

for i in range(conponents.getNuntChild()):
# Assume that primtive variables are |leafs in the instance AST
if (inst_node.getC ass() is \
org.j nodel i ca. nodel i ca. conpiler.InstPrimtive) is False:
dunp_i nst _ast (conponents.getChild(i),indent + " ")

# Get all extends clauses and dunp themrecursively
ext ends= i nst_node. i nst Ext endsLi st
for i in range(extends.getNunChild()):
# Assume that primtive variables are |leafs in the instance AST
if (inst_node.getC ass() is \
org. jnodel i ca. nodel i ca.conpiler.InstPrimtive) is False:
dunp_i nst _ast (extends. getChild(i),indent + " ")

Take a minute and make sure that you understand the essential parts of the function.

Having defined the function dunp_i nst _ast , we call it with the CauerLowPassAnal og instance as an argument.
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# Dunp the filter instance
dunp_inst _ast(filter_instance,"")

You should now see a rather lengthy printout in your shell window. Let us have a closer look at a few of the
instances in the model. First look at the printouts for aresistor in the model:

I nst Conposi te: Mdelica. El ectrical . Anal og. Basi c. Resi stor Rl {R=1}
InstPrimtive: Sl.Resistance R {=1, start=1, final quantity="Resistance", \
final unit="0hnt'}
I nst Ext ends: Interfaces. OnePort {R=1}
InstPrimtive: Sl.Voltage v {final quantity="ElectricPotential", final unit="V'}
InstPrimtive: Sl.Current i {final quantity="ElectricCurrent", final unit="A"}
I nst Conposite: PositivePin p {}
InstPrimtive: Sl.Voltage v {final quantity="ElectricPotential", final unit="V"}
InstPrimtive: Sl.Current i {final quantity="ElectricCurrent", final unit="A"}
I nst Conposite: NegativePin n {}
InstPrimtive: Sl.Voltage v {final quantity="ElectricPotential", final unit="V'}
InstPrimtive: Sl.Current i {final quantity="ElectricCurrent", final unit="A"}

The model instance if of type | nst Conposi t e, and contains two elements, one primitive variable, R, and one ex-
tends clause. The modification environment for the resistor contains a value modification '=1' and some modifi-
cations of the built in attributes for the type Real. The nst Ext ends node contains anumber of child nodes, which
corresponds to the content of the class I nt er f aces. nePor t . Notice the difference between the source AST,
where an extends node is essentially aleaf in the tree, whereasin the instance tree, the extends clause is expanded.

Let ushave alook at the effects of redeclarations in the instance AST. In the CauerL owPassAnalog model, a step
voltage signal sourceisused, which inturn relies on redeclaration of ageneric signal sourceto astep. Theinstance
node for the step voltage source V is given below:

I nst Conposi te: Mdelica. El ectrical . Anal og. Sour ces. StepVol tage V {V=0, startTime=1, \
of f set =0}
InstPrimtive: Sl.Voltage V {=0, start=1, final quantity="El ectricPotential", \
final unit="V"}
| nst Ext ends: | nterfaces. Vol tageSource {V=0, startTi ne=1, offset=0,
redecl are Model i ca. Bl ocks. Sources. St ep si gnal Sour ce( hei ght =V) }
InstPrimtive: Sl.Voltage of fset {=0, =0, final quantity="ElectricPotential", \
final unit="V'}
InstPrimtive: SI.Time startTime {=1, =0, final quantity="Time", final unit="s"}
I nst Repl aci ngConposi te: Modelica. Bl ocks. Sources. St ep si gnal Source {hei ght=V, \
final offset=offset, final startTine=startTi ne}
InstPrimtive: Real height {=V, =1}
I nst Ext ends: I nterfaces. Si gnal Source {height=V, final offset=offset, \
final startTine=startTi ne}
InstPrimtive: Real offset {=offset, =0}
InstPrimtive: Slunits.Time startTine {=startTime, =0, final quantity="Ti me", \
final unit="s"}
I nst Ext ends: SO {hei ght=V, final offset=offset, final startTi ne=startTi ne}
InstPrimtive: Real Qutput y {}
I nst Ext ends: Bl ockl con {height=V, final offset=offset,
final startTime=startTi ne}

Here we see how the modification redeclare Modelica.Blocks.Sources.Sep signal Source(height=V) affects the
instance AST. Thenodel nst Repl aci ngConposi t e representsthe component instance, instantiated from the class
Mbdel i ca. Bl ocks. Sour ces. St ep, resulting from the redeclaration. As aconsequence, this branch of theinstance
AST issignificantly altered by the redeclare modification.

Now look at the modification environment for the component instance st ar t Ti me. The environment contains two
value modifications: '=1' and '=0". As noted above, the first modification in the list corresponds to the outermost
modification and have precedence over the following modifications. Take a minute to figure out the origin of the
modifications by looking upwards in the instance AST.

1.5. Flattening of the filter model

Having computed the instance, we can now flatten the model:

# Don't flatten nodel if it already exists
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try:
filter_flat_nodel.name()
except :
# Flatten the nodel instance filter_instance
filter _flat_nodel = nct.flatten_nodel (filter_instance, target)

During flattening, the instance treeis traversed and all primitive declarations and equations are collected. In addi-
tion, such as scalarization and elimination of alias variables are performed.

Let us have alook at the flattened model:

print(filter_flat_nodel)

We may also retrieve some model statistics:

print("*** Mddel statistics for CauerLowPassAnal og *** ")
print("Nunber of differentiated variables: %" \

% filter_flat_nodel . nunDi fferentiatedReal Vari abl es())
print (" Nunber of al gebraic variables: %"\

% filter_flat_nodel . numAl gebrai cConti nousReal Vari abl es())
print (" Nunber of equations: %"\

% filter_flat_nodel . nunEquati ons())
print("Nunber of initial equations: %"\

% filter_flat_nodel.num nitial Equations())

How many variables and equations is the model composed of ? Does the model seem to be well posed?

At this point, take some timeto explorethefil ter_fl at_nodel object by typing 'filter flat_model.<tab>' in the
Python shell to see what methods are available. Y ou may also have alook in the Modelica compiler API.
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Chapter 10. Limitations

This page lists the current limitations of the IModelica.org platform. The development of the platform can be
followed at the Trac site, where future releases and associated features are planned. The IModelica.org platform
download page has links to compliance reports detailing the current MSL compliance.
» The Modelicacompliance of the front-end is limited; the following features are currently not supported:

« The support for String variables and parametersis limited.

« Partial support for external functions; records are not supported as arguments or return values.

» Thefollowing built-in functions are not supported:

term nal ()

¢ Thefollowing built-in functions are only supported in FMUs:

ceil (x) i nteger (x) reinit(x, expr)

div(x,y) mod( X, y) sanpl e(start,interval)
edge(b) pre(y) sem Linear(...)

floor(x) remx,y) sign(v)

initial () delay(...) spatial Distribution(...)

* Inthe Optimicafront-end the following constructs are not supported:
» Annotations for transcription information.
» Thefollowing limitations apply to FMUs compiled with IModelica.org:
« Source code FMUs can not be generated, only binary FMUs.
« Functions for setting and getting string variables do not work.
» The dependenciesKind attribute in the XML file for FMU 2.0 is not generated.
* Directional derivatives are known to have limitations in some cases.
« Asynchronous simulation is not supported.
* FMU states (set, get and serialize) are not supported.
» Thefollowing limitations apply to optimization using CasA Di-based collocation with IModelica.org:

« Incomplete support for thel nt eger and Bool ean types. To the extent that they are supported, they are treated
more or lesslikereals.

» No support for St ri ng and enuner at i on types.
« Attributes with any name can be set on any type of variable.

* The property of whether an optimization problem has free or fixed time horizon cannot be changed after
compilation.

» The following limitations apply to IMUs compiled with IModelica.org (note that IMUs are deprecated in
JModelica.org 1.15):

e The ODE interface requires the Modelicamodel to be written on explicit ODE form in order to work.
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» Second order derivatives (Hessians) are not provided.
e Theinterface for interacting with IMUs does not comply with FMI specification.

* Discrete variables are not supported in IMUSs.
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Appendix A. Compiler options

1. List of options that can be set in compiler

Table A.1. Compiler options

Option

Option type/
Default value

Description

automatic_tearing

bool ean /true

If enabled, then automatic tearing of equation systemsis
performed.

c_conpil er

string /' gcc'

The C compiler to use to compile generated C code.

check_i nactive_ contition-
al s

bool ean / f al se

If enabled, check for errorsin inactive conditional com-
ponents when compiling. When using check mode, this
isaways done.

conponent _names_in_errors

bool ean /fal se

If enabled, the compiler will include the name of the
component where the error was found, if applicable.

convert _free_dependent _
paraneters_to_al gebraics

bool ean /true

If enabled, then free dependent parameters are converted
to algebraic variables.

di vide_by_vars_in_tearing

bool ean / f al se

If enabled, aless restrictive strategy is used for solving
equationsin the tearing algorithm. Specifically, division
by parameters and variablesis permitted, by default no
such divisions are made during tearing.

enabl e_bl ock_function_ ex-
traction

bool ean / f al se

Looks for function callsin blocks. If afunction call ina
block doesn't depend on the block in question, it is ex-
tracted from the block.

ext ernal _constant _ eval ua-
tion

i nt eger /5000

Time limit (ms) when evaluating constant calls to exter-
nal functions during compilation. 0 indicates no evalua-
tion. -1 indicates no time limit.

gener at e_bl ock_j acobi an

bool ean /fal se

If enabled, then code for computing block Jacobiansis
generated. If blocks are needed to compute ODE jaco-
bians they will be generated anyway

gener at e_dae_j acobi an

bool ean / f al se

If enabled, then code for computing DAE Jacobians are
generated.

generate_htm _di agnostics

bool ean / f al se

If enabled, model diagnostics are generated in HTML
format. Thisincludes the flattened model, connection
sets, dliassetsand BLT form.

generate_nof _files

bool ean /fal se

If enabled, then flat model before and after transforma-
tions will be generated.

gener at e_ode_j acobi an

bool ean /fal se

If enabled, then code for computing ODE Jacobians are
generated.

generate_only_initial _ sys-
tem

bool ean / f al se

If enabled, then only theinitial equation system will be
generated.

hal t _on_war ni ng

bool ean / f al se

If enabled, compilation warnings will cause compilation
to abort.

i ndex_r eduction

bool ean /true

If enabled, then index reduction is performed for high-in-
dex systems.

nonl i near _sol ver

string/'kin-
sol '

Decides which nonlinear equation solver to use. Alterna-
tivesare 'kinsol or ' ni npack' .
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Option

Option type/
Default value

Description

rel ational _tine_events

bool ean /true

If enabled, then relational operators are allowed to gener-
ate time events.

state_initial_equations

bool ean /fal se

If enabled, the compiler ignoresinitial equationsin the
model and adds parameters for controlling intitial values
of states.Default isf al se.

state_start_val ues_fi xed

bool ean / f al se

If enabled, then initial equations are generated automat-
ically for differentiated variables even though the fixed
attribute is equal to fixed. Setting thisoptiontot r ue is,
however, often practical in optimization problems.

automatic_add_initial _
equati ons

bool ean /true

If enabled, then additional initial equations are added to
the model based equation matching. Initial equations are
added for states that are not matched to an equation.

cc_extra_fl ags

string/': 01

Optimization level for c-code compilation

cc_extra_flags_applies_to

string/' func-
tions'

Parts of c-code to compile with extra compiler flags
specified by cconpi l er _extra_f| ags

common_subexp_elim

bool ean / true

If enabled, the compiler performs a global analysison
the equation system and extract identical function calls
into common equations.

di agnostics_limt

i nt eger /500

This option specifies the equation system size at which
the compiler will start to reduce model diagnostics. This
option only affects diagnostic output that grows faster
than linear with the number of equations.

dynam c_st at es

bool ean /true

If enabled, dynamic states will be calculated and generat-
ed.

elimnate_alias_paraneters

bool ean /fal se

If enabled, then alias parameters are eliminated from the
model.

elimnate_alias_variables

bool ean / true

If enabled, then dias variables are eliminated from the
model.

enabl e_structural _ di agno-
sis

bool ean /true

If enabled, structural error diagnosis based on matching
of equationsto variablesis used.

enabl e_vari abl e_scal i ng

bool ean /fal se

If enabled, then the' noni nal ' attribute will be used to
scale variables in the model.

equation_sorting

bool ean /true

If enabled, then the equation system is separated into
minimal blocks that can be solved sequentially.

export_functions

bool ean / f al se

Export used Modelica functions to generated C code in
amanner that is compatible with the external C interface
in the Modelica Language Specification.

export_functions_vba

bool ean/f al se

Create VBA-compatible wrappers for exported func-
tions. Requires the option expor t _f uncti ons.

ext ernal _constant _
eval uati on_nax_proc

i nteger /10

The maximum number of processes kept alive for eval-
uation of external functions during compilation. This
speeds up evaluation of functions using external objects
during compilation.If less than 1, no processes will be
kept alive, i.e. thisfeature is turned off.

function_inci dence_ conpu-
tation

string/' none'

Controls how matching algorithm computes incidences
for function call equations. Possible values: * none' ,

“al ' . With' none' al outputs are assumed to depend
on dl inputs. With* al | * the compiler analyses the func-
tion to determine dependencies.
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Option

Option type/
Default value

Description

hornot opy_t ype

string/'actu-
al'

Decides how homotopy expressions are interpreted dur-
ing compilation. Can be set to either ' si nplified or
"actual ' which will compile the model using only the
simplified or actual expressions of the homotopy() oper-
ator.

ignore_wthin

bool ean /fal se

If enabled, ignore within clauses both when reading in-
put files and when error-checking.

inline_functions

string/ " triv-
ial'

Controlles what function callsareinlined. * none' - no
function calsareinlined. ' trivial' -inlinefunction
calls that will not increase the number of variablesin the
system. ' al I - inlineal function callsthat are possible.

local _iteration_in_tearing

string/' of f"

This option controls whether equations can be solved lo-
cal intearing. Possible options are: * of f' , local itera-
tions are not used (default). ' annot ati on' , only equa-
tionsthat are annotated are candidates. ' al I ', al equa-
tions are candidates.

max_n_pr oc

integer /4

The maximum number of processes used during c-code
compilation.

normal i ze_m ni mum_time_
pr obl erms

bool ean /true

If enabled, then minimum time optimal control prob-
lems encoded in Optimica are converted to fixed interval
problems by scaling of the derivative variables. Has no
effect for Modelica models.

propagat e_deri vatives

bool ean / true

If enabled, the compiler will try to replace ordinary vari-
able references with derivative references. Thisis done
by first finding equations on the form x = der(y). If pos-
sible, uses of x will then be replaced with der(x).

variability_propagation

bool ean /true

If enabled, the compiler performs a global analysison
the equation system and reduces variables to constants
and parameters where applicable.

wite_ iteration_variables_

to_file

bool ean /fal se

If enabled, two text files containing one iteration variable
name per row iswritten to disk. The files contains the it-
eration variables for the DAE and the DAE initialization
system respectively. Thefiles are output to the resource
directory of the FMU.

wite_ tearing_pairs_to_
file

bool ean /fal se

If enabled, two text files containing tearing pairs is writ-
ten to disk. Thefiles contains the tearing pairs for the
DAE and the DAE initialization system respectively. The
files are output to the working directory.

al gorithns_as_functions

bool ean / f al se

If enabled, convert algorithm sections to function calls.

di sabl e_snoot h_event s

bool ean/f al se

If enabled, no events will be generated for smooth opera-
tor if order equalsto zero.

event _i ndi cat or _scal i ng

bool ean /fal se

If enabled, event indicators will be scaled with nominal
heuristics

generat e_event _sw tches

bool ean /true

If enabled, event generating expressions generates
switchesin the c-code. Setting thisoptiontof al se can
give unexpected results.

cs_rel _tol

real /1.0E-6

Tolerance for the adaptive solversin the Co-Simulation
case.
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Option Option type/ Description
Default value
cs_sol ver integer /0 Specifiestheinternal solver used in Co-Simulation. O -
CVode, 1- Euler.
cs_step_size real /0.001 Step-size for the fixed-step solversin the Co-Simulation

case.

enf or ce_bounds

bool ean / true

If enabled, min/ max bounds on variables are enforced
in the equation blocks.

iteration_variable_scaling |integer /1 Scaling mode for the iteration variablesin the equation
block solvers: 0 - no scaling, 1 - scaling based on nomi-
nals, 2 - utilize heuristic to guess nominal based on min,
max, start, etc.

| og_l evel integer /3 Log level for the runtime: O - none, 1 - fatal error, 2 - er-

ror, 3 - warning, 4 - info, 5 - verbose, 6 - debug.

nl e_sol ver _default _tol

real /1.0E-10

Default tolerance for the equation block solver.

nl e_sol ver _nax_resi dual _
scal ing_factor

real /1.0E10

Maximal scaling factor used by automatic and hybrid
residual scaling algorithm.

nl e_sol ver _m n_residual _
scal i ng_factor

real /1.0E-10

Minimal scaling factor used by automatic and hybrid
residual scaling algorithm.

rescal e_after_singular_jac

bool ean /true

If enabled, scaling will be updated after asingular ja-
cobian was detected (only active if automatic scaling is
used).

rescal e_each_step

bool ean / f al se

If enabled, scaling will be updated at every step (only ac-
tive if automatic scaling is used).

resi dual _equation_scaling

integer /1

Equations scaling mode in eguation block solvers: 0 - no
scaling, 1 - automatic scaling, 2 - manual scaling, 3 - hy-
brid.

runtime_log_to file

bool ean/f al se

If enabled, log messages from the runtime are written di-
rectly to afile, besides passing it through the FMU inter-
face. Thelog file name is generated based on the FMU
name.

use_Brent _in_1d

bool ean /true

If enabled, Brent search will be used to improve accura-
cy in solution of 1D non-linear equations.

events_default_tol

real /1.0E-10

Default tolerance for the event iterations.

events_tol _factor

real /1.0E-4

Tolerance safety factor for the event indicators. Used
when external solver specifiesrelative tolerance.

nl e_brent _ignore_error

bool ean/f al se

If enabled, the Brent solver will ignore convergence fail-
ures.

nl e_sol ver _check_j ac_cond

bool ean /fal se

If enabled, the equation block solver computes and log
the jacobian condition number.

nl e_sol ver _max_iter

i nteger /100

Maximum number of iterations for the equation block
solver.

nl e_sol ver_mn_tol

real /1.0E-12

Minimum tolerance for the equation block solver. Note
that, e.g. default Kinsol tolerance is machine precision
pwr 1/3,i.e. 1e-6.

nle_solver _regularization_ |real /-1.0 Tolerance for deciding when regularization should be ac-
tol erance tivated (i.e. when condition number > reg tol).
nle_solver_step_linmt_ fac- |real /10.0 Factor limiting the step-size taken by the nonlinear

tor

solver.

96




Compiler options

Option Option type/ Description
Default value
nl e_sol ver _tol _factor real /1.0E-4 Tolerance safety factor for the equation block solver.

Used when external solver specifies relative tolerance.

nl e_sol ver _use_| ast _
integrator_step

bool ean / true

If enabled, theintial guessfor the iteration variables will
be set to the iteration variables from the last integrator

step.

nl e_sol ver _use_nom nal s_as_
fal | back

bool ean / true

If enabled, the nominal valueswill be used as initial
guess to the solver if initialization failed.

use_j acobi an_equilibration

bool ean/f al se

If enabled, jacobian equilibration will be utilized in the
equation block solversto improve linear solver accuracy.

use_newt on_f or _brent

bool ean /true

If enabled, afew Newton steps are computed to get a
better initial guess for Brent.

bl ock_sol ver _experinental _ |integer /0 Activates experimental features of equation block solvers
node
cs_experiment al _node integer /0 Activates experimental features of CS ode solvers
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Appendix B. Release notes

1. Release notes for JModelica.org version 1.17
1.1. Highlights

For thisrelease, all focus hasbeen on ModelicalM SL compliance. All example modelsinthebundled MSL version
both check and simulate correctly with this release.

1.2. Compiler

1.2.1. Compliance

For this release, the Modelica Standard Library (MSL) version 3.2.1 build 4 is used with some additional hand-
picked revisionsfrom trunk. All example modelsin thisversion of MSL simulate correctly with the IModelica.org
1.17 release. The results can be seen in the compliance reports for simulation and check on the IModelica.org
download site.

The trunk version of MSL has some additional example models compared to version 3.2.1. build 4. Compliance
reports for trunk MSL can be found on the IModelica.org public Jenkins, using trunk version of JModelica.org.

2. Release notes for JModelica.org version 1.16
2.1. Highlights

» Strong focus on ModelicalM SL compliance

* A number of improvements to the CasADi tool chain for optimization
2.2. Compiler

2.2.1. Compliance

For this release, there has been a strong emphasis on improving ModelicaslMSL compliance. In several MSL
subpackages almost all example models now simulate with a correct result. Complete compliance reports can be
found on IModelica.org public Jenkins.

Especially, compliance improvements have been made in the following subpackages:
» Modelica.Mechanics.MultiBody

* Modelica.Blocks

» Modelica.Electrical.Analog

» Modelica.Electrical .Digital

» Modelica.Electrical .Quasi Stationary

» Modelica.Electrical.Spice3

* ModelicaMagnetic

» Modelica.Mechanics.Rotational

* ModelicaMedia
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* ModelicaThermal

* ModelicaMath

Further, the following operators are now supported:

o delay

* gpatia Distribution

2.2.2. Support for dynamic state select

JModelica.org now does dynamic state sel ection, when necessary.

2.3. Optimization

Severa additions and improvementsin the CasADi tool chain for optimization have been made. Among the most
important are:

» Warm starting - descretize an optimization problem once, solve it multiple times with different parameters,
inputs, and initial guesses

* Classesfor Model Predictive Control and Moving Horizon Estimation

» Back tracking from discretized problem to original. Trace back residuals, dual variables, and troublesome Ja-
cobian entries to the original model's equations and variables

 Possibleto inspect equation scaling

» Checkpointing option to reduce discretization work
3. Release notes for JModelica.org version 1.15
3.1. Highlights

» FMI export supporting FMI 2.0

* FMI import supporting FMI 2.0 with PyFMI

Improved MSL compliance
 Support for over-constrained initialization systems
» Dynamic optimization framework based on CasADi 2.0

* Improved numerical algorithmsin FMU runtime
3.2. Compiler

3.2.1. Compliance

Many bug fixesinthe compiler hasresulted in greatly increased M SL support. Most or all of the testsand examples
for the following MSL sub-libraries now compile and simulate successfully (complete compliance information
for MSL can be found on the IModelica.org website, www.jmodelica.org):

» Blocks

e ComplexBlocks

* Electrical.Analog
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* Electrica.Machines

¢ Electrical.MultiPhase

* Electrical.Quasi Stationary
* Electrical.Spice3

* Magnetic

» Mechanics.Rotational

» Mechanics.Translational
* Media

* Thermal

 Utilities

3.2.2. Support for over-constrained initialization systems

Automatic balancing of over-constrained initial systemsis now implemented. This means that the compiler auto-
matically checks the consistency of theinitial system and automatically removes redundant initial equations.

3.2.3. FMU 2.0 export

Support for export of FMUs according to the the recently released FMI 2.0 specification, both for Model Exchange
and Co-Simulation, has been added.

3.2.4. Improved numerical algorithms in FMU runtime

Numerous improvements has been made to the FMU runtime code. Specific improvements include solving one-
dimensional non-linear systems more robustly.

3.2.5. CasADi 2.0 support in Optimization
The CasADi based optimization tool chain has been updated to work with CasADi 1.9 and later (which isnot back-
wards compatible with CasADi 1.8 and earlier). This allows exploiting new CasADi improvements such as bug

fixes, pluggable solvers, and improved documentation. The version of CasADi that isincluded in IModelica.org
isnow 2.0.

3.3. Simulation

Support for the recently released FMI 2.0 specification has been included in PyFMI. FMUs following FMI 2.0
can now be loaded and simulated just as easily as FMUs following FMI 1.0.

4. Release notes for JModelica.org version 1.14
4.1. Highlights

» All modelsinthe Modelica Standard Library, except Modelica.Fluid and those using operator delay() or function
pointers, pass error check

» FMI export supporting FM1 2.0RC2
» FMI import supporting FMI 2.0RC2 with PyFMI

» Improved error messages from the compiler
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 Various improvements and extensions to the CasA Di-based optimization toolchain
4.2. Compiler

4.2.1. Compliance

A lot of work with compliance has resulted in that ailmost all models in the Modelica Standard Library now pass
error check. Exceptions are models in Modelica.Fluid and those using the operator delay() or function pointers.
In particular, the following improvements have been made:

 Support for arrays indexed with enumerations or Booleans

 Support for overloaded operators and the Complex type

» Improved error messages

» Support for structural parameters depending on external C/Fortran code
 Support for index reduction of optimization classes

 Improved modularization and extension points in the compiler

* Support for index reduction of optimization classes

» Many bug fixes to improve Modelica compliance

4.2.2. New compiler API

A new Java API for calling the compiler through a separate process has been added.
4.2.3. FMI 2.0 RC2 export

Support for export of FMUs that are compliant with FMI 2.0 RC2 has been added.

4.3. Simulation

Support for import and simulation of 2.0 RC2 FMUs with the Python package PyFMI.
4.4. Optimization

The following improvements have been made to the CasADi-based collocation agorithm:
» More efficient memory usage and code generation for function evaluations

* Interface added to WORHP, which serves as an alternative to |POPT

* More general treatment of blocking factors. In particular it is now possible to penalize and constrain the dis-
continuity jumps.

5. Release notes for JModelica.org version 1.13
5.1. Highlights

FMI 2.0 Export, according to RC1

* New CasADi tool chain for optimization
* In-lined switches

 Improved compliance
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5.2. Compilers

5.2.1. FMI 2.0 RC1 export

FMI 2.0 export according to RC1 is supported. There are some limitations, summarized in the list below.
 Support for dependencies but not for dependencieskKind in the XML tag Model Structure
 Support for directional derivative but known to have limitations in some cases

* No support for strings and running asynchronuously

» No support for FMU states (set, get and serialize)

5.2.2. Compliance

 Improved support for expandable connectors

» Improved support for unknown array sizesin functions

* Improved handling of the state select attribute

* Many bug fixes

5.3. Simulation

5.3.1. In-lined switches

In-lined switches have been introduced, which gives a more robust initialization and simulation of systems with
discrete parts.

5.4. Optimization
5.4.1. New CasADi tool chain

 Support for more Modelica features than previous CasADi-based tool chain
* User defined functions in models
» No support for control flow
» Flat model is exposed in Python in symbolic form using CasADi, and can be inspected and manipul ated

» Support for avariety of collocation options
6. Release notes for JModelica.org version 1.12
6.1. Highlights

» Greatly improved support for Modelica.M echanics.MultiBody
 Support for expandable connectors

 Support for when statements

» Support for event generating built-in functions

 Support for overconstrained connection graphs

 Support for reinit() operator
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6.2. Compilers

The following compliance improvements have been made:

Improved support for algorithms, including when statements.

Improved support for if equations.

Improved handling of discrete constructs.

Improved handling of attributesin alias sets.

Improved index reduction algorithm.

Added support for expandable connectors and for overconstrained connection systems.
Added support for automatic differentiation of functions with smoothOrder annotation.
Added support for String operations.

Many bug fixes.

Added check mode, where a class is checked for errors to seeif it can be used in a ssimulation class.

Class annotations are now only allowed as the last element of the class, as per the Modelica 3.2 specification.

6.3. Simulation

The following simulation improvements have been made:

Improved the simulation run-time with support for the improvements made in the compiler

Improved the robustness when solving linear and nonlinear blocks.

JModelica.org now simulates the example models from the MultiBody package in MSL with the exception of the
few models that require dynamic state selection.

6.4. Contributors

Bengt-Arne Andersson

Christian Andersson

Tove Bergdahl

Emil Fredriksson
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Toivo Henningsson

Jonathan Kampe
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Fredrik Magnusson

Jesper Mattsson

lakov Nakhimovski

Jon Sten
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Johan Ylikiiskila
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6.4.1. Previous contributors
Sofia Gedda
Petter Lindgren
John Lindskog
Tobias Mattsson
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Teo Nilsson
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7. Release notes for JModelica.org version 1.11
7.1. Highlights

* Runtimelogging
» Support for ModelicaError and assert

Additional method in block solver

 Support for ModelicaStandardTablesin MSL

» Improved compliance

7.2. Compilers

The following compliance improvements have been made:

» Most of the previously unsupported operators are now supported for FMUs

 Support for assert clauses

« String operations are now supported (this is useful for asserts, even though String variables are not supported)
» Support for vectorization for built-in functions

* Inlining of simple functions is now activated by default

» Severa bug fixes

104



Release notes

7.3. Simulation

7.3.1. Runtime logging

The runtime logging has been much improved with a new debugging and analysis framework. This enables de-
bugging of convergence issuesin non-linear systems of equations.

7.3.2. Support for ModelicaError and assert

The compiler and runtime has support for ModelicaError and assert clauses. |f an assert clause fails or aModeli-
caError is called, the integrator will reject the current step.

7.4. Contributors

Bengt-Arne Andersson
Christian Andersson
Tove Bergdahl

Emil Fredriksson
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8. Release notes for JModelica.org version 1.10
8.1. Highlights

» Export of FMUs for Co-Simulation

* Import of FMU 2.0b4 in PyFMI

» Improved log format for FMUs

» Improved variable scaling in the CasADi collocation

» Improved handling of measurement data in the CasADi collocation
* Improved logging from compilers

» Improved Modelica compliance

8.2. Compilers
The following compliance improvements have been made:
» Thefollowing operators are now supported:

¢ smooth()

 skew(x)

e scalar(A)

« vector(A)

e matrix(A)

« diagonal(v)

 Improved handling of unmatched HGT. All unmatched iteration variables and residual equationsare now paired
and treated the same way asregular HGT pairs.

» Improvements have been made to analytical jacobians. Notably full support for functions and bug fixes.

Also many bug fixes and performance improvements have been made.

8.2.1. Export of FMUs for Co-Simulation

Export of FMUs for Co-Simulation version 1.0 is now supported. Specifying a co-simulation FMU instead of a
model exchange FMU is done via an option to the conpi | e_f mu method. Theinterna solver in the co-simulation
FMU is CVode from the Sundials suite and there is also an explicit Euler method. The choice of the solver can
be changed via a parameter in the FMU.

8.3. Python

8.3.1. Improved result data access

Modified handling of simulation and optimization results to facilitate post processing of results such as plotting.
Accessing variables and parameters from results will always return avector of size equal to the time vector. Also,
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the base result class (JMResul t Base) hastwo new functions, i ni ti al andfi nal , which will alwaysreturn initial
and final value of the simulation/optimization as scalar values. See both Chapter 5, Smulation of FMUs and
Chapter 6, Optimization for plotting code examples.

8.3.2. Improved error handling

Improved error handling of compiler problems (exceptions, errors and warnings). Problems are now given in the
same way as regardless if JPype or separate process is used when compiling. Additionally errors and warning
are now returned as python objects to facilitate easier post processing of compiler problems. It is aso possible to
retrieve warnings from the return result of conpi I e_f mu, conpi | e_j mu and conpi | e_f nux, e.g.:

r = conpile_frmu(' Test', 'test.no')
print r.warnings

8.3.3. Parsing of FMU log files
FMUs and JMUs created with IModelica.org now produce logsin a structured XML format, which can be either

parsed using tools in the Python module pyj mi . | og or using general purpose XML tools. See Section 5.2, “Run-
timelogging” for code examples.

8.4. Simulation

8.4.1. Support for FMU version 2.0b4

Added support for simulation of models following the FMI version 2.0 beta 4, both model exchange FMUs and
co-simulation FM Us.

8.4.2. Result filter

Added an option to the simulation method for filtering which variables are stored. Thisisespecially useful in case
of large models with many variables as just selecting a subset of variables to store can speed up the simulation.
Additionally there is now the option to store the result directly in the memory instead of writing the result to file.
8.4.3. Improved solver support

Improvements on the solvers has been made resulting in that simulation of Model Exchange FMUs can now be

performed by a number of solvers. See the simulation options for the supported solvers. For example there is now
an Radaub solver.

8.5. Optimization

8.5.1. Improved variable scaling

The variable scaling performed based on nominal trgjectories for the CasADi collocation has been improved and
can now be set individually for each variable. It aso has a more robust default behavior.

8.5.2. Improved handling of measurement data
The old class Par anet er Est i mat i onDat a for the CasADi collocation has been replaced by Measur enent Dat a.

The new class can also be used for optimal control, and not only parameter estimation, and also offers additional
strategies in the handling of the data.

8.6. Contributors
Bengt-Arne Andersson
Christian Andersson

Tove Bergdahl
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9. Release notes for JModelica.org version 1.9.1

This release contains a bug fix which eliminates a dependency on external librariesin FMUs. Apart from this bug
fix, the release isidentical to IModelica.org version 1.9.

10. Release notes for JModelica.org version 1.9
10.1. Highlights

 Improved function inlining
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e Manual selection of iteration variables in tearing algorithm - Hand Guided Tearing (HGT)
 Support for external objects

» Simulation of Co-simulation FMUs in Python

» Improved compiler execution speed

* Improved compiler memory efficiency

» Support for MSL CombiTables

» Improvements to the CasADi-based collocation optimization agorithm, including support for non-fixed time
horizons and supplying nominal trajectories for scaling purposes

» Updatedto MSL 3.2
10.2. Compilers

10.2.1. Improved Modelica compliance

The following compliance improvements have been made:

 Support for external objects (classes extending the predefined partial class External Object)
* Support for the same component being added from more than one extends clause.

» Many bug fixes, notably concerning inheritance and redeclares.

10.2.2. Support for MSL CombiTables

There is now support for MSL CombiTables, both 1D and 2D. The table can be either read from file or explicitly
supplied as a parameter matrix.

10.2.3. Support for hand guided tearing

The tearing algorithm in the compiler can now be influenced by user selected residuals and iteration variables,
in order to make such selections explicit, e.g., to exploit physical insight in the choice of iteration variables. The
selections are made by means of vendor specific annotations and can be done at the component level and at the
system level.

10.2.4. Improved function inlining

Improved support for inlining of functions. Notably anew in-lining mode has been added, where functionsthat can

be inlined without introducing additional variables to the model. The inlining algorithm has also been expanded
to handle more situations.

10.2.5. Memory and execution time improvements in the compiler
The compilation timesfor large simul ation model s has been reduced by more than two orders of magnitudes. Also,

the memory required to compile large model s has been decreased by two orders of magnitude. As a consequence,
larger models up to 100.000 equations can be comfortably compiled on a standard computer.

10.3. Python

10.3.1. Compile in separate process

The possibility to compile in a separate process from the Python interface has been added. This is enabled with
an argument to conpi | e_f mu, conpi | e_j mu or conpi | e_f mux which is Fal se by default. It is also possible to
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pass arguments to the VM. This enables, among other things, users on 64 bit Windows to use a 64 bit JRE (Java
Runtime Environment) for compiling a model.

10.4. Simulation

10.4.1. Simulation of co-simulation FMUs

Support for simulation of co-simulation FMUs following the FMI version 1.0 has been implemented and follows
the same work-flow as for loading and simulating an model exchange FMU, i.e:

frompyfm inport |oad_fnu
nmodel = | oad_f mu("CS_Model . fmu")
res = nodel . simul ate(final _tine=1.0)

10.5. Optimization

10.5.1. Improvements to CasADi-based collocation algorithm
The following features have been added to the CasADi-based collocation algorithm
 Support for non-fixed time horizons, alowing the formulation of, for example, minimum-time problems

* Possibility to supply nominal trajectories based on simulation results, which are used to compute (possibly time-
variant) scaling factors. This makesit possible to conveniently obtain good scaling for all variablesin amodel.

* Possihility to use more advanced interpolation of optimized inputs based on collocation polynomials, instead
of linear interpolation, providing higher accuracy when simulating a system using optimized inputs

* Setting of nominal attributes from Python in loaded models

10.6. Contributors

Bengt-Arne Andersson
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11. Release notes for JModelica.org version 1.8.1

Thisrelease is identical to IModelica.org version 1.8 apart from one important bug fix. The issue that has been
fixed concerns the scaling of start attributesin IMUs.

12. Release notes for JModelica.org version 1.8
12.1. Highlights

» Improved Maodelica compliance of the compiler front-end, including support for if equations and inner/outer
declarations

Optimized performance and memory utilization of the compiler front-end

A new state selection algorithm with support for user defined state selections
* A new function inlining algorithm for conversion of algorithmic functions into equations

» Improvements to the CasADi-based collocation optimization agorithm, including support for terminal con-
straints

12.2. Compilers

12.2.1. Improved Modelica compliance
The following compliance improvements have been made:
» Support for if equations

 Support for inner/outer declarations

» Expressionsin der() operator

» Function call equations in when equations

* Limited support for String parameters. String parameters are now supported in the compiler front-end, although
they are discarded in the code generation.

Also, many bug fixes and performance improvements in the compiler are included in this release.
12.2.2. Function inlining

Thereisanew function inlining algorithm for conversion of algorithmic functions into equations.
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12.2.3. New state selection algorithm

The new state selection algorithm takes user input (stateSelect attribute) into account and implements heuristics
to select states that avoids, if possible, iteration of non-linear systems of equations.

12.3. Python

12.3.1. Simplified compiling with libraries

The compiler now support adding extra libraries as files, which makes it easier to compile amodel using a struc-
tured library not in the MODELICAPATH. Both Python functions conpi | e_j mu and conpi | e_f mu support this.
For example, compiling A. B. Exanpl e from alibrary A in directory Li bDi r with conpi | e_f mu, this can now be
written as;

conpil e_frnu(' A B. Exanple', '"LibDir/A")
12.4. Optimization

12.4.1. Improvements to CasADi-based collocation algorithm
The CasADi-based collocation algorithm has been improved with new features
 Support for point constraints

* Setting of parameter values from Python in loaded models

* Setting of min/max attributes from Python in loaded models

12.5. Contributors

Bengt-Arne Andersson
Christian Andersson
Tove Bergdahl
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13. Release notes for JModelica.org version 1.7
13.1. Highlights

 Improved support for hybrid systems, including friction models and ideal diodes
 Support for tearing of equation systems

» Support for external Fortran functions

Support for function inlining
 Reorganization of the Python code: a new stand-alone package, PyFMI, provided

A novel dynamic optimization algorithm implemented in Python based on collocation and CasADi is provided
13.2. Compilers

13.2.1. Support for mixed systems of equations

Mixed systems of equations, i.e., equation systems containing both real and integer/bool ean variables are support-
ed. Such systems commonly occursin, e.g., friction models and diode models.

13.2.2. Support for tearing

Tearing isatechnique to improve simulation efficiency by reducing the number of iteration variableswhen solving
systems of equations. A tearing algorithm relying on graph-theoretical methods has been implemented, which is
used to generate more efficient simulation code.

13.2.3. Improved Modelica compliance

With added support for external Fortran function and many bug fixes, the compiler now handles many models
that previously would not compile.

13.2.4. Function inlining

Callsto Modédlicafunctions (i.e. not external functions) in equations can now beinlined, by adding the equivalent
equationsand temporary variables. Thisallows sometransformationsthat are specific to equationsto be performed
on the function calls as well. It also allows compilation targets that does not handle functions, such as CasADi,
to be used with models containing functions. Currently, only functions that only contains assignment statements
are supported. Such function are common in e.g. medialibraries.

13.3. Python

13.3.1. New package structure
The Python code has been refactored into three packages:

» PyFMI A packagefor working with FMUs, perform simulations, interact with the model, plotting of result data
and more. This package can be used stand-al one, see www.pyfmi.org.

113


http://www.pyfmi.org

Release notes

» PyJMI A packagefor working with IMUs, solve optimization problems, perform simulations, model interaction
and more.

» PyModelica A package containing Modelica and Optimica compilers.

13.3.2. Support for shared libraries in FMUs
The FMU import and export now supports dependencies on extra shared libraries. For the export, the shared

libraries are placed in the same folder as the model binary. Similarly, any shared libraries packed with the model
binary will be found when importing the FMU.

13.4. Simulation

13.4.1. Simulation of hybrid systems
The improved compiler support for mixed systems of equations is matched by extensions to the IModelica.org

simulation runtime system, enabling simulation of more sophisticated hybrid models. Amongst others, the classic
M odelica.M echanics.Rotati onal .Exampl es.Coupl edClutches benchmark model can be now simulated.

13.5. Optimization

13.5.1. A novel CasADi-based collocation algorithm
A novel CasADi-based collocation algorithm is provided. The new algorithm isimplemented in Python and relies
on the CasADi package for computation of derivatives and interaction with IPOPT. The new algorithm is an

order of magnitude faster than the existing collocation algorithm on many problems, and provides significantly
improved flexibility.

13.6. Contributors
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14. Release notes for JModelica.org version 1.6
14.1. Highlights

* A new derivative free parameter optimization algorithm for FMUs

» A new pseudo spectral optimization algorithm

* Index reduction to handle high-index DAEs

* A new graphical user interface for plotting of simulation and optimization results

* Icon rendering and many improvementsin the Eclipse Modelica plug-in
14.2. Compilers

14.2.1. Index reduction

High-index systems, commonly occurring in mechanical systems, are supported in IModelica.org 1.6. Theimple-
mentation relies on Pantelides algorithm and the dummy derivative selection agorithm.

14.2.2. Modelica compliance
The following improvements to the Modelica compliance of the editors has been made:
* Partial support for the smoot h() operator (not used in event handling, otherwise supported).

 Support for global name lookup (i.e. names starting with adot are looked up from the top scope).

14.3. Python

14.3.1. Graphical user interface for visualization of simulation and optimization
results

A new graphical interface for displaying simulation and / or optimization results have been implemented. The
interface al so supports results generated from Dymola, both binary and textual.

14.3.2. Simulation with function inputs

The Python simulation interface has been improved so that top level inputs in FMUs can be driven by Python
functionsin addition to tables.

14.3.3. Compilation of XML models

A new convenience function for compilation of Modelica and Optimica models into XML, including equations,
has been added.

14.3.4. Python version upgrade

The Python package has been updated to Python 2.7.
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14.4. Optimization

14.4.1. Derivative- free optimization of FMUs

The derivative-free optimization algorithm in JM odelica.org enables users to calibrate dynamic model s compliant
with the Functional Mock-up Interface standard (FMUs) using measurement data. The new functionality offers
flexible and easy to use Python functions for model calibration and relies on the FMU simulation capabilities of
JModelica.org. FMU model sgenerated by IModelica.org or other FMI-compliant toolssuch asAMESim, Dymola,
or SimulationX can be calibrated.

14.4.2. Pseudo spectral methods for dynamic optimization

Pseudo spectral optimization methods, based on collocation, are now available. The algorithms relies on CasADi
for evaluation of derivatives, first and second order, and IPOPT is used to solve the resulting non-linear program.
Optimization of ordinary differential equations and multi-phase problems are supported. The algorithm has been
developed in collaboration with Mitsubishi Electric Research Lab, Boston, USA, where it has been used to solve
satellite navigation problems.

14.5. Eclipse Modelica plugin

The IModelica.org Eclipse plugin has improved to the point where we are ready to do arelease. Version 0.4.0 is
now available from the IModelica.org website.

Changes from the versions that has been available from the SVN repository are mainly stability and performance
improvements. To this end, some features have been disabled (auto-complete and format file/region). There are
also afew new features, most notably support for rendering of classicons.

14.6. Contributors
Christian Andersson
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15. Release notes for JModelica.org version 1.5
15.1. Highlights

* FMU export
* Improvementsin compiler front-end

» Equation sorting and BLT

Symbolic solution of simple equations
 Improved simulation support for hybrid and sampled systems
 Improved initialization with Kinsol and SuperLU

» Improved support for external functions.
15.2. Compilers
15.2.1. When clauses

When clauses are supported in the Modelica compiler.
15.2.2. Equation sorting

Equationsare sorted using Tarjan'salgorithm and theresulting BL T representation isused in the C code generation.
Also, trivial equations are solved and converted into assignment statements.

15.2.3. Connections
Added support for connecting arrays of components and for connect equations in for clauses.
15.2.4. Eclipse IDE

The IModelica plugin for Eclipse has been updated to be more stable and to syntax highlight Modelica 3.2 code
properly.

15.2.5. Miscellaneous

Fixed several compiler bugs.

15.3. Simulation

15.3.1. FMU export

JModelica.org 1.5 supports export of Functional Mock-up Interface (FMI1) compliant models (FMUSs). The export-
ed modelsfollowsthe FMI standard and may beimported in other FMI compilant simulation tools, or they may be
simulated using JModelica.org using the FMU import feature introduced in version 1.4. The exported FMUs con-
tain an XML file, containing model meta data such as variable names, aDL L, containing the compiled C functions
specified by FMI, and additional files containing the flattened Modelica model useful for debugging purposes.

15.3.2. Simulation of ODEs

A causalization approach to simulation of Modelica models has been implemented. This means that the DAE
resulting from flattening is transformed into an ODE, and ODE solvers can be used to simulate the model. This
feature is a requirement for export of FMUSs. This strategy has required the symbolic algorithms and the C code
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generation modul e to be adapted as described above. In addition, the simulation runtime system has been extended
toallow for trivial equations converted into assignmentsand for implicit systems of equations. Thelatter are solved
using the Newton solver KINSOL, modified to support regularization to handle singular Jacobian matrices.

15.3.3. Simulation of hybrid and sampled systems

When clauses are now supported, as well as the sample operator. Accordingly, some classes of hybrid systems
may be simulated as well as sampled control systems. In addition, variables of type Integer and Boolean are also
supported.

15.4. Initialization of DAEs

A novel initialization algorithm based on the Newton solver KINSOL from the SUNDIALS suite is introduced.
The KINSOL solver has been improved by adding support for Jacobian regularization in order to handle singular
Jacaobians and by interfacing the sparse linear solver SuperLU in order to more efficiently handle large scale
systems.

15.5. Optimization

Curtis Powell Reid seeding has been implemented to speed up computation of sparse Jacobians. When solving
large optimization problems, this can give a speed-up factor of up to 10-15.

15.6. Contributors
Christian Andersson

Tove Bergdahl

Magnus Géfvert

Jesper Mattsson

Johan Ylikiiskila

Johan Akesson

15.6.1. Previous contributors
Philip Nilsson

Roberto Parrotto
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Philip Reuterswérd
16. Release notes for JModelica.org version 1.4
16.1. Highlights

 Improved Python user interaction functions
* Improvements in compiler front-end

 Support for sensitivity analysis of DAEs using Sundias

Introduced new model concept, jmu-models.

 Support for enumerations
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16.2. Compilers

16.2.1. Enumerations

Added support for enumerations to the same extent as Integers, except that arrays indexed with enumerations are
not supported.

16.2.2. Miscellaneous
Fixed many compiler bugs, especially concerning complex class structures.
16.2.3. Improved reporting of structural singularities

Systems which are structurally singular now generates an error message. Also, high-index systems, which are not
yet supported, are reported as structurally singular systems.

16.2.4. Automatic addition of initial equations

A matching algorithm isused to automatically add initial equationsto obtain abalanced DAE initialization system.
If too few initial equationsare given, thealgorithmwill set thef i xed attributeto true for some of the differentiated
variablesin the model.

16.3. Python interface

16.3.1. Models
* Introduced new model classj nodel i ca. j m . IMUMbdel which replaced j nodel i ca. j ni . JM Model .
e jrmodelica. fmi.FM Mdel changed nametoj nodel i ca. f mi . FMUMbdel .

* jrmodelica.jm.JM Model . get _val ue and set _val ue have changed to j nodel i ca. j mi . JMUMbdel . get and
set , which have also been introduced for j nodel i ca. f mi . FMUMbdel

16.3.2. Compiling
* Introduced IMU files which are compressed files containing files created during compilation.

* Introduced new methodj nodel i ca. j ni . conpi | e_j mu which compiles Modelicaor Optimicamodelsto IMUs.
These IMUs are then used when creating a JMUvbdel which loads the model in a Python object.

» Removed possibility to compile models directly in high-level functions, initialize, simulate and optimize. In-
stead conpi | e_j mu should be used.

16.3.3. initialize, simulate and optimize

e initialize, simulate and optinize are no longer functions under jrodelica but methods of
j model i ca. j mi . JMUMbdel andj model i ca. fmi. FMUVbdel (i nitialize andsinul ate only).

* New objects for optionstoinitial i ze, si nul at e and opt i ni ze have been introduced. The al g_ar gs and
sol ver _ar gs parameters have therefore been removed. The optionsfromal g_ar gs and sol ver _ar gs can how
befound in the options object. Each algorithm fori ni ti al i ze, si nul at e and opt i ni ze havetheir own options
object.

16.3.4. Result object

Added convenience methods for getting variable trajectories from the result. The result trajectories are now ac-
cessed as objects in adictionary:

res = nodel . si mul at e()
yres = res['y']
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16.4. Simulation

16.4.1. Input trajectories

Changed how the input trajectories are handled. The trajectories now have to be connected to an input variable
as a 2-tuple. The first argument should be alist of variables or a single variable. The second argument should be
a data matrix with the first column as the time vector and the following columns corresponding to the variables
in the first argument.

16.4.2. Sensitivity calculations

Sensitivity calculations have been implemented when using the solver IDA from the Assimulo package. The
sensitivity calculations are activated with the the option:

opty['IDA_options]['sensitivity’] = True
which calculates sensitivities of the states with respect to the free parameters.
16.4.3. Write scaled simulation result to file

In some cases, it is useful to be able to write the scaled simulation result when the option
enabl e_vari abl e_scal i ng is set to true. Specifically, this supports debugging to detect if additional variables
should have anominal value. This featureis available also for initialization and optimization.
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17. Release notes for JModelica.org version 1.3
17.1. Highlights

» Functional Mockup Interface (FMI) simulation support
* Support for minimum time problems

 Improved support for redeclare/replaceable in the compiler frontend

Limited support for external functions

* Support for stream connections (with up to two connectors in a connection)
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17.2. Compilers

17.2.1. The Modelica compiler

17.2.1.1. Arrays

Slice operations are now supported.

Array support is now nearly complete. The exceptions are:
 Functions with array inputs with sizes declared as "' - only basic support.
» A few array-related function-like operators are not supported.
 Connect clauses does not handle arrays of connectors properly.
17.2.1.2. Redecare

Redeclares as class elements are now supported.

17.2.1.3. Conditional components

Conditional components are now supported.

17.2.1.4. Constants and parameters

Function calls can now be used as binding expressions for parameters and constants. The handling of Integer,
Boolean and record type parameters is also improved.

17.2.1.5. External functions
» Basic support for external functionswrittenin C.

» Annotationsfor libraries, includes, library directories and include directories supported.

Platform directories supported.

» Can not be used together with CppAD.

» Arrays as arguments are not yet supported. Functionsin Modelica utilies are also not supported.
17.2.1.6. Stream connectors

Stream connectors, including the operators inStream and actual Stream and connections with up to two stream
connectors are supported.

17.2.1.7. Miscellaneous
The error checking has been improved, eliminating many erroneous error messages for correct Modelica code.

The memory and time usage for the compiler has been greatly reduced for medium and large models, especially
for complex class structures.

17.2.2. The Optimica compiler
All support mentioned for the M odelica compiler applies to the Optimica compiler aswell.
17.2.2.1. New class attribute objectivelntegrand

Support for the objectivel ntegrand class attribute. In order to encode L agrange cost functions of the type
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the Optimica class attribute obj ect i vel nt egr and is supported by the Optimica compiler. The expression L may
be utilized by optimization algorithms providing dedicated support for Lagrange cost functions.

17.2.2.2. Support for minimum time problems

Optimization problems with free initial and terminal times can now be solved by setting the free attribute of the
class attributes startTime and final Time to true. The Optimica compiler automatically trandlates the problem into
a fixed horizon problems with free parameters for the start en terminal times, which in turn are used to rescale
the time of the problem.

Using this method, no changes are required to the optimization algorithm, since afixed horizon problem is solved.

17.3. JModelica.org Model Interface (JMI)

17.3.1. The collocation optimization algorithm
17.3.1.1. Dependent parameters

Support for free dependent parameters in the collocation optimization algorithm is now implemented. In models
containing parameter declarations such as:

parameter Real pl(free=true);
paraneter Real p2 = pi;

where the parameter p2 needs to be considered as being free in the optimization problem, with the additional
equality constraint:

pl = p2
included in the problem.
17.3.1.2. Support for Lagrange cost functions

The new Optimica class attribute objectivel ntegrand, see above, is supported by the collocation optimization al-
gorithm. The integral cost is approximated by a Radau quadrature formula.

17.4. Assimulo

Support for simulation of an FMU (see below) using Assimulo. Simulation of an FMU can either be done by using
the high-level method *simulate* or creating a model from the FMIModel class together with a problem class,
FMIODE which is then passed to CV ode.

17.5. FMI compliance

Improved support for the Functional Mockup Interface (FMI) standard. Support for importing an FMI model,
FMU (Functional Mockup Unit). The import consist of loading the FMU into Python and connecting the models
C execution interface to Python. Note, strings are not currently supported.

Imported FMUs can be simulated using the Assimulo package.

17.6. XML model export

17.6.1. noEvent Operator
Support for the built-in operator noEvent has been implemented.
17.6.2. static attribute

Support for the Optimica attribute static has been implemented.
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17.7. Python integration

17.7.1. High-level functions

17.7.1.1. Model files

Passing more than one model file to high-level functions supported.
17.7.1.2. New result object

A result object is used as return argument for all algorithms. The result object for each algorithm extends the base
classResul t Base and will therefore (at |east) contain: the model object, the result file name, the solver used and
the result data object.

17.7.2. File 1/O

Rewriting xmlparser.py has improved performance when writing simulation result data to file considerably.
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18. Release notes for JModelica.org version 1.2
18.1. Highlights

 Vectors and user defined functions are supported by the Modelica and Optimica compilers
» New Python functions for easy initialization, simulation and optimization

« A new Python simulation package, Assimulo, has been integrated to provide increased flexibility and perfor-
mance

18.2. Compilers
18.2.1. The Modelica compiler

18.2.1.1. Arrays

Arrays are now almost fully supported. This includes all arithmetic operations and use of arrays in al places
allowed in the language specification. The only exception is slice operations, that are only supported for the last
component in an access.
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18.2.1.2. Function-like operators

Most function-like operators are now supported. The following list contains the function-like operators that are
*not* supported:

* sign(v)

* Integer(e)

e String(...)

o div(x,y)

* mod(x,y)

* rem(xy)

. ceil(x)

* floor(x)

* integer(x)

o delay(...)
 cardinaity()

* semiLinear()

* Subtask.decouple(v)
* initial()
 terminal()

» smooth(p, expr)

» sample(start, interval)
* pre(y)

* edge(b)

* reinit(x, expr)

* scalar(A)
 vector(A)

e matrix(A)
 diagonal(v)
 product(...)

* outerProduct(vl, v2)
* symmetric(A)

o skew(x)

18.2.1.3. Functions and algorithms

Both algorithms and pure M odelica functions are supported, with afew exceptions:
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e Useof control structures (if, for, etc.) with test or loop expressions with variability that is higher than parameter
is not supported when compiling for CppAD.

* Indexesto arrays of records with variability that is higher than parameter is not supported when compiling for
CppAD.

 Support for inputs to functions with one or more dimensions declared with ":" is only partial.
External functions are not supported.

18.2.1.4. Miscellaneous

 Record constructors are now supported.

» Limited support for constructs generating events. If expressions are supported.

» The noEvent operator is supported.

» Theerror checking has been expanded to cover more errors.

» Modelica compliance errors are reported for legal but unsupported language constructs.

18.2.2. The Optimica Compiler

All support mentioned for the Modelica compiler applies to the Optimica compiler aswell.

18.3. The JModelica.org Model Interface (JMI)
18.3.1. General

18.3.1.1. Automatic scaling based on the noni nal attribute

The Modelica attribute noni nal can be used to scale variables. This is particularly important when solv-
ing optimization problems where poorly scaled systems may result in lack of convergence. Automatic scal-
ing is turned off by default since it introduces a slight computational overhead: setting the compiler option
enabl e_vari abl e_scal i ng tot rue enables this feature.

18.3.1.2. Support for event indicator functions

Support for event indicator functions and switching functions are now provided. These features are used by the
new simulation package Assimulo to simulate systems with events. Notice that limitations in the compiler front-
end applies, see above.

18.3.1.3. Integer and boolean parameters

Support for event indicator functions and switching functions are now provided. These features are used by the
new simulation package Assimulo to simulate systems with events. Notice that limitations in the compiler front-
end applies, see above.

18.3.1.4. Linearization

A function for linearization of DAE models is provided. The linearized models are computed using automatic
differentiation which gives results at machine precision. Also, for index-1 systems, linearized DAES can be con-
verted into linear ODE form suitable for e.g., control design.

18.4. The collocation optimization algorithm

18.4.1. Piecewise constant control signals

In control applications, in particular model predictive control, it is common to assume piecewise constant control
variables, sometimes referred to as blocking factors. Blocking factors are now supported by the collocation-based
optimization algorithm, seej nodel i ca. exanpl es. cstr_npc for an example.
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18.4.2. Free initial conditions allowed

Therestriction that all state initial conditions should be fixed has been relaxed in the optimization algorithm. This
enables more flexible formulation of optimization problems.

18.4.3. Dens output of optimization result

Functions for retrieving the optimization result from the collocation-based algorithm in a dense format are now
provided. Two options are available: either auser defined mesh is provided or the result is given for auser defined
number of points inside each finite element. Interpolation of the collocation polynomials are used to obtain the
dense outpuit.

18.5. New simulation package: Assimulo

The simulation based on pySundials have been removed and replaced by the Assimulo package which is also
using the Sundials solvers. The main difference between the two is that Assimulo is using Cython to connect to
Sundials. Thishas substantially improved the simulation speed. For moreinfo regarding Assimulo and itsfeatures,
see: http://www.jmodelica.org/assimulo.

18.6. FMI compliance

The Functional Mockup Interface (FMI) standard is partially supported. FMI compliant model meta data XML
document can be exported, support for the FMI1 C model execution interface is not yet supported.

18.7. XML model export

Models are now exported in XML format. The XML documents contain information on the set of variables, the
equations, the user defined functions and for the Optimica’s optimization problems definition of the flattened
model. Documents can be validated by a schema designed as an extension of the FMI XML schema.

18.8. Python integration

e The order of the non-named arguments for the ModelicaCompiler and OptimicaCompiler function
conpi | e_nodel has changed. In previous versions the arguments came in the order (nodel _fil e_nane,
model _class_nane, target = "nodel") andisnow (nodel class_name, nodel file_nane, target
= "nodel ") .

» The functions set paranet er and get paraneter injmi.Mdel have been removed. Instead the functions
set _val ue and get_vaue (alsoinj ni . Model ) should be used.

* Caching has been implemented in the xmlparser modul e to improve execution time for working with jmi.Model
objects, which should be noticeable for large models.

18.8.1. New high-level functions for optimization and simulation

New high-level functionsfor problem initialization, optimization and simulation have been added which wrap the
compilation of amodel, creation of amodel object, setup and running of an initialization/optimization/simulation
and returning of aresult in one function call. For each function there is an agorithm implemented which will be

used by default but there is aso the possibility to add custom agorithms. All examples in the example package
have been updated to use the high-level functions.
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Appendix C. Initialization and
simulation of JMUs (Deprecated in
JModelica.org 1.15)

1. Introduction

There are two different means to simulate a Modelica model in IModelica.org: either as a Functional Mock-Up
Unit (FMU) or asaJModelica.org Model Unit (JMU). Inthe former case, the model is converted into an Ordinary
Differential Equation (ODE), whereasinthelatter case, the model issimulated asaDifferential Algebraic Equation
(DAE). The default, and recommended, means to simulate models is to use FMUs, since this approach provides
better performance, a more robust initialization mechanism, and significantly better support for hybrid systems.
Simulation of IMUsmay still be useful, however, in some optimization applications where simulation of the model
asaDAE/IMU, is an important prerequisite for optimization by means of the collocation algorithms.

This chapter demonstrates how to initialize and simulate a model which has been compiled to a IMU. To read
about simulation of FMUSs, see Chapter 5, Smulation of FMUs.

2. Initialization of IMUs

2.1. Solving DAE initialization problems

Before a model can be simulated it must be initialized, i.e. consistent initial values must be computed. To do
this, IModelica.org supplies the IMUModel member functioni ni ti al i ze, whichinitializesthe IMUModel. The
function is called after compiling and creating a IMUModel:

# Conpile the stationary initialization nodel into a JMJ
from pynodel i ca i nport conpile_jnu
nmodel _name = conpile_j mu(" M. Model ", "/path/to/ MyNodel . mo")

# Load the nodel instance into Python
frompyjm inmport JMIVodel
init_nodel = JMJUWbdel (nodel _nane)

# Solve the DAE initialization system
init_result = init_nodel.initialize()

The IMUModel instancei ni t _nmodel isnow initialized and is ready to be simulated.

Theinteractive help for the initialize method is shown by the command:

>>> hel p(init_nodel .initialize)
The initialization nethod depends on which algorithmis used, this can
be set with the function argunent 'algorithmi. Options for the al gorithm
are passed as option classes or as pure dicts. See
JMUModel .initialize_options for nore details.

The default algorithmfor this function is |poptlnitializationAlg.
Par amet er s: :

algorithm --
The al gorithmwhich will be used for the initialization is
specified by passing the algorithmclass as string or class
object in this argunent. 'algorithm can be any class which
i mpl ements the abstract class Al gorithnBase (found in
algorithmdrivers.py). In this way it is possible to wite own
al gorithnms and use themw th this function.

128



Initialization and simulation of IMUs
(Deprecated in IModelica.org 1.15)

Default: 'lpoptlnitializationAlg'

options --
The options that should be used in the algorithm For details on
the options do:

>> nyModel = JMUMbdel (. ..)
>> opts = nmyModel .initialize_options()
>> opts?

Valid val ues are:

- Adict which gives IpoptlnitializationA gOptions with
default values on all options except the ones listed in
the dict. Enpty dict will thus give all options with
def aul t val ues.

- An options object.

Default: Enpty dict

Ret urns: :

Result object, subclass of algorithmdrivers. Resul t Base.

Optionsfor theavailableinitialization algorithms can be set by first retrieving an options object using the JMUMbdel
method i nitial i ze_opti ons:

>>> hel p(init_nodel .initialize_options)

Get an instance of the initialize options class, prefilled with default
values. If called without argunment then the options class for the
default initialization algorithmw |l be returned.

Paraneters: :
al gorithm --
The al gorithm for which the options class should be fetched.
Possi bl e values are: 'lpoptlnitializationAl g, 'KlnitSolveAlg'.

Default: 'lpoptlnitializationAlg'
Returns: :

Options class for the algorithm specified with default val ues.

Having solved the initialization problem, the result of the initialization can be retrieved from the return result
object:

X
y

init_result['x"]
init_result['y"]

2.2. How JModelica.org creates the initialization system of equa-
tions

To find aset of consistent initial values a system of non-linear equations, called the system of initialization equa-
tions, issolved. This system is composed from the DAE equations, the initial equations, some resulting from start
attributes with the fixed attribute set to true. Start attributes with the fixed attribute set to false are treated as initial
guesses for the numerical algorithm used to solve the initialization problem

Someinitialization algorithmsrequire the system of initial equationsto bewell defined in the sense that the number
of variables must be equal to the number of equations. If thisis not the case, the

« If the number of equationsis greater than the number of variables the system is overdetermined. Such a system
may not have a solution, and will be treated as ill-defined. An exception is thrown in this case.

* If the number of equations is less than the number of variables the system is underdetermined and such a
system hasinfinitely many solutions. In this case, the compiler triesto balance the system by setting some fixed
attributesto t r ue. So if the user suppliestoo few initial conditions, some variables with the attribute f i xed set
tofal se may be changed tot r ue during initialization.
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2.3. Initialization algorithms
2.3.1. Initialization using IPOPT

JModelica.org provides a method for DAE initialization that is based on |POPT, the mathematical formulation of
the a gorithm can be found in the IMI API documentation. Note that this algorithm does not rely on the causaliza-
tion procedure (in particular the BLT transformation) whichiscommon. Instead, the DAE residua isintroduced as
an equality constraint when solving an optimization problem where the squared difference between the non-fixed
start values and their corresponding variables are minimized. As a consequence, the algorithm relies on decent
start values for all variables. This approach is generally more sensitive to lacking initial guesses for start values
than are algorithms based on causalization.

The agorithm provides the options summarized in Table C.1, “Options for the collocation-based optimization
algorithm”.

Table C.1. Optionsfor the collocation-based optimization algorithm

Option Default Description
result_file_nanme Empty string (default gen- | Specifies the name of the file where the optimization
erated filenamewill be  |result iswritten. Setting this option to an empty string
used) resultsin adefault file name that is based on the name

of the optimization class.

resul t _format "txt! Specifiesin which format to write the result. Currently
only textual mode is supported.

wite scal ed_result Fal se Write the scaled optimization result if set to Tr ue. This
option isonly applicable when automatic variable scal-
ing is enabled. Only for debugging use.

In addition to the options for the collocation algorithm, |POPT options can a so be set by modifying the dictionary
| POPT_opt i ons contained in the collocation algorithm options object. Here, all valid IPOPT options can be spec-
ified, see the IPOPT documentation for further information. For example, setting the option max_i ter:

opts['|POPT options']['max_iter'] = 300

makes IPOPT terminate after 300 iterations even if no optimal solution has been found.
Some statistics from IPOPT can be obtained by issuing the command:

>>> res_init.solver.init_opt_ipopt_get_statistics()

The return argument of this function can be found by using the interactive help:

>>> hel p(res_init.solver.init_opt_ipopt_get statistics)
Get statistics fromthe |ast optimzation run.

Ret urns: :

return_status --
The return status from | POPT.

nbr_iter --
The nunber of iterations.

obj ective --
The final value of the objective function.

total exec tine --
The execution tine.

2.3.2. Initialization using KinitSolveAlg

JModelica.org also provides a method for DAE initialization based on the non-linear equation solver KINSOL
from the SUNDIALS suite. KINSOL is currently comprised in the Assimulo package, included when installing
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JModelica.org. KINSOL is based on Newtons method for solving non-linear equations and is thus locally con-
vergent. Attempts are made to make KlnitSolveAlg as robust as possible but the possibility of finding a local
minimum instead of the solution still remains. If the solution found by KlInitSolveAlgisalocal minimum awarn-
ing will be printed. The initial guesses passed to KINSOL are the ones supplied as start attributes in the current
Modelicamodel.

KInitSolveAlg also implements an improved linear solver connected to KINSOL. This linear solver implements
Tikhonov regularization to handle the problems of singular Jacobians aswell as support for SuperL U, an efficient
sparse linear solver.

The options providable are summarized in Table C.2, “Options for KInitSolveAlg”.

Table C.2. Optionsfor KInitSolveAlg
Option Default Description

use_constraints Fal se A flag indicating whether constraints
are to be used during initiaization.
Further explained in Section 2.3.2.1,
“The use of constraints’.

constraints None A nunpy.array containing floats
that, when supplied, defines the con-
straints on the variables. Further ex-
plained in Section 2.3.2.1, “The use
of constraints”.

resul t _format "txt' Specifiesin which format to write the
result. Currently only textual modeis

supported.
result_file_name Empty string (default generated file| Specifies the name of the file where
name will be used) the optimization result iswritten. Set-

ting this option to an empty string
results in a default file name that is
based on the name of the optimization

class.
KI NSOL_opt i ons A dictionary with the defalt KIN-|These are the options sent to
SOL options the KINSOL solver. These are re-

viewed in detail in Table C.3, “Op-
tions for KINSOL contained in the
KI NSOL_opt i ons dictionary”.

Table C.3. Optionsfor KINSOL contained in the ki nsa._opti ons dictionary

Options Default Descriptions

use_j ac True Flag indicating whether or not KIN-
SOL uses the jacobian supplied by
JModelica.org (Tr ue) or if KINSOL
evaluates the Jacobian through fi-
nite differences (Fal se). Finite dif-
ferences is currently not available in
sparse mode.

sparse Fal se Flag indicating whether the problem
should be treated as sparse (Tr ue) or
dense (Fal se).

2.3.2.1. The use of constraints

KINSOL, and henceasoKi ni t Sol vAl g, only supportssimple unilateral constraints, that is constraining avariable
to being positive or negative. If theoptionuse_const r ai nt s issetto Tr ue, constraints are used. Which constraints
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that are used depends on whether or not the user has supplied constraintswith theconst r ai nt s option. If set, these
will be used otherwise constraints will be computed by reading the min and max attributes from the Modelicafile.
How the constraint array iswritten is summarized in Table C.4, “Vaues allowed intheconst rai nt s array”.

Table C.4. Values allowed in theconstraints array

Value Constraint
0.0 Unconstrained.
1.0 Greater than, or equal to, zero.
20 Greater than zero.
-1.0 Lessthan, or equal to, zero.
-2.0 Lessthan zero.

When the constraints are read from the Modelica file the value from Table C.4, “Values allowed in the con-
straints array” most fitting to the min and max values is chosen. For example a variable with min set to 3.2
and max set to 5.6 is constrained to be greater than zero. When the algorithm is finished however the result will
be compared with the min and max values from the model testing if the solution fulfills the constraints set by
the Modedlicafile.

2.3.2.2. Verbosity of KINSOL

There are four different levels of verbosity in KINSOL with O being silent and 3 being the most verbose. The
verbosity level is controlled by the FMU log level. Table C.5, “Verbosity levelsin KINSOL” describes what is
outpuit.

Table C.5. Verbosity levelsin KINSOL

FMU log level Verbosity level Output
<=2 0 No information displayed.
3 1 In each nonlinear iteration the fol-

lowing information is displayed: the
scaled Euclidean norm of the residu-
al at the current iterate, the scaled Eu-
clidian norm of the Newton step as
well asthe number of function evalu-
ations performed so far.

4 2 Level 1 output as well as the Euclid-
ian and in finity norm of the scaled
residual at the current iterate

>=5 3 Level 2 output plus additional values
used by the global strategy aswell as
statistical information from the linear
solver.

3. Simulation of JMUs

Simulation of IMUsin JModelica.org is performed via the simulate method of the IMU model object. The model
objectiscalled IMUMbdel and islocated inthe IModelica.org Python package pyj mi . IMUMbdel supports compiled
models from JModelica.org which have the extension . j nu.

# Inport JMUMbdel frompyjm and |oad the JMJ
frompyjm inmport JMIVodel
nmy_nodel = JMUModel (' nyJMJ.j mu')

The simulation method in JMUMbdel is by default connected to the Assimulo simulation package and thus able
to use its solvers. Continuing the short example from above, the following code will simulate the loaded IMU
using default values and options:
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res = ny_nodel . sinmul at e()

3.1. The simulate function

There are several parameters that can be set in the IMUMbdel . si mul at e function.

start_time The time when the solver should start the integration.

final _time The time when the solver should finish the integration.

i nput Input signal for the simulation. (Further explained in below.)

al gorithm Thealgorithm that will be used for the simulation. Currently only aconnection

to Assimulo is supported and connected through the algorithm Assi mul oAl g.

opti ons The options to be used in the algorithm. (Further explained in below.)

3.1.1. Input

Theinput defines the input trajectories to the model and should be a 2-tuple consisting of the name(s) of the input
variables and the second argument should be either a data matrix or afunction. If the argument is a data matrix it
should contain atime vector as the first column and the second column should correspond to the first namein the
first argument and so forth. If instead the second argument is a function it should be defined to take the time as
input and return the number of inputsin the order defined by the first argument.

For example, consider that we have a model with an input variable u1 and that the model should be driven by a
sinus wave as input. Also we are interested in the interval 0 to 10.

i mport nunmpy as N

t = N linspace(0.,10., 100) # Create one hundred evenly spaced points
u = Nsin(t) # Create the input vector
u_traj = N transpose(N. vstack((t,u))) # Create the data matri x and transpose

# it to the correct form

The above code has created the data matrix that we are interested in giving to the model as input, we just need
to connect the data to a specific input variable, u1:

i nput_object = ('ul', u_traj)

Now we are ready to simulate using the input and simulate 10 seconds.

res = nodel .sinmulate(final _tinme=10, input=input_object)

If we on the other hand would have two input variables, ul and u2 the script would instead look like:

i mport nunpy as N

t = N |linspace(0., 10., 100) # Create one hundred evenly spaced points
ul = N.sin(t) # Create the first input vector

u2 = N.cos(t) # Create the second input vector

u_traj = N transpose(N. vstack((t,ul,u2))) # Create the data matri x and

# transpose it to the correct form
input_object = (['ul','u2'], u_traj)
res = nodel .sinmulate(final _tine=10, input=i nput_obj ect)
Note that the variables are now a List of variables.
If wewereto do the same example using input functionsinstead, the code would look like for the singleinput case:
i nput_object = ("ul', N sin)
and for the double input case:

def input_function(t):
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return N.array([N.sin(t),N cos(t)])

i nput_object = (['ul',"'u2'],input_function)
3.1.2. Options for IMUModel

The options attribute are where options to the specified algorithm are stored and are preferably used together with:

opts = JMUMbdel . si mul at e_opti ons()

which returns the default options for the default algorithm. Information about the available options can be viewed
by typing help on the opt s variable:

>>> hel p(opts)
Options for simulation of a JMJ nodel using the Assinulo simulation package.
The Assimul o package contain both explicit solvers (CVode) for ODEs and
implicit solvers (IDA) for DAEs. The ODE sol vers require that the problem
is witten on the form ydot = f(t,y).

InTableC.6, “ General optionsfor AssimuloAlg.” thegeneral optionsfor theAssi nul oAl g agorithm are described
while in Table C.8, “Selection of solver arguments for IDA” a selection of the different solver arguments for
the DAE solver IDA is shown. In Table C.7, “Selection of solver arguments for CVode” a selection of solver
arguments for the ODE solver CVodeis shown. More information regarding the solver options can be found here,
http://www.jmodelica.org/assimulo.

Table C.6. General optionsfor AssmuloAlg.

Option Default Description
sol ver "1 DA Specifies the simulation method that
isto be used.
ncp 0 Number of communication points. If

ncp is zero, the solver will return the
internal steps taken.

initialize True If set to True, an algorithm for ini-
tilizing the differential equation is
invoked, otherwise the differential
equation is assumed to have consis-
tent initial conditions.

write_scal ed_result Fal se Set this parameter to Tr ue towritethe
result to filewithout taking scalingin-
to account. If the value of scaled is
Fal se, then the variable scaling fac-
tors of the model are used to repro-
duced the unscaled variable values.

result_file_name Empty string (default generated file| Specifies the name of the file where
name will be used) the simulation result is written. Set-
ting this option to an empty string
results in a default file name that is
based on the name of the model class.

Letslook at an example, consider that you want to simulate a IMU model using the solver Cvode together with
changing the discretization method (discr) from BDF to Adans:

opts = nodel . si nul ate_opti ons() # Retrieve the default options

opts['solver'] = "'CVode' # Change the solver from | DA to CVode

opts[' CVode_options']['discr'] = 'Adans' # Change from using BDF to Adans

nmodel . si nul at e( opti ons=opt s) # Pass in the options to sinulate and sinmulate
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It should also be noted from the above example the options regarding a specific solver, say the tolerances for
CVode or | DA, should be stored in a double dictionary where the first is named after the solver concatenated with

_options:

opts[' CVode_options']["atol"']
opts['I DA options']["atol'] =

= 1.
1.0e-6

Oe-6 # Options specific for CVode

# Options specific for |DA

For the general options, as changing the solver, they are accessed as a single dictionary:

opts['solver'] = 'CVode' # Changing the sol ver

opts['ncp'] = 1000

Table C.7. Selection of solver argumentsfor CVode

# Changi ng the nunber of communication points.

Option

Default

Description

di scr

' BDF'

The discretization method. Can be ei-
ther ' BDF' or' Adans'

iter

' Newt on'

The iteration method. Can be either
' Newt on' Or ' Fi xedPoi nt "' .

maxord

The maximum order used. Maximum
for' BDOF* is5 while for the' Adans'
method the maximum is 12

maxh

I nf

Maximum step-size. Positive float.

ato

1.0e-6

Absolute Tolerance. Can be an ar-
ray of floats where each value corre-
sponds to the absolute tolerance for
the corresponding variable. Can also
be a single positive float.

rto

1.0e-6

Relative Tolerance. Positive float.

Table C.8. Selection of solver

argumentsfor IDA

Option

Default

Description

maxord

The maximum order used. Positive
integer.

maxh

I nf

Maximum step-size. Positive float.

ato

1.0e-6

Absolute Tolerance. Can be an ar-
ray of floats where each value corre-
sponds to the absolute tolerance for
the corresponding variable. Can aso
be a single positive float.

rto

1.0e-6

Relative Tolerance. Positive float.

suppress_al g

Fal se

Suppress the algebraic variables on
the error test. Can be either Fal se or
True.

sensitivity

Fal se

If set to True, sensitivities for the
states with respect to parameters set
tofreeinthemodel will be calcul ated.

3.1.3. Return argument

The return argument from the simulate method is an object derived from a common result object Resul t Base in
al gorithmdrivers. py with afew extra convenience methods for retrieving the result of avariable. The result
object can be accessed in the same way as a dictionary type in Python with the name of the variable as key.
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res = nodel . si mul at e()
y =res['y'] # Return the result for the variabl e/ paraneter/constant y
dery = res['der(y)"'] # Return the result for the variabl e/ paraneter/constant der(y)

This can be done for all the variables, parameters and constants defined in the model and is the preferred way of
retrieving the result. There are however some more options available in the result object, see Table C.9, “Result
Object”.

Table C.9. Result Object

Option Type Description

options Property Gets the options object that was used
during the simulation.

sol ver Property Gets the solver that was used during
the integration.

result_file Property Gets the name of the generated result
file

i s_vari abl e( name) Method Returns Tr ue if the given name is a
time-varying variable.

data_matrix Property Gets the raw data matrix.

i s_negat ed( name) Method Returns True if the given name is
negated in the result matrix.

get _col um( nane) Method Returns the column number in the da-
ta matrix which corresponds to the
given variable.

3.2. Examples

In the next sections, it will be shown how to use the IModelica.org platform for simulation of various IMUs.
3.2.1. Simulation with inputs

This example will demonstrate how a model with two inputs with data from a MATLAB-file can be simulated.
The model to be simulated is a quadruple tank connected to two pumps, which also are the inputs to the model.

The model isdepicted in Figure C.1, “A schematic picture of the quadruple tank process.” and in the code below
the corresponding Modelica code is listed.

Figure C.1. A schematic picture of the quadrupletank process.
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nodel QuadTank
/| Process paraneters
paranet er Modelica. Slunits. Area Al=4.9e-4, A2=4.9e-4, A3=4.9e-4, A4=4.09e-4;
par anet er Modelica. Slunits. Area al=0.03e-4, a2=0.03e-4, a3=0.03e-4, a4=0.03e-4;
par anet er Model i ca. Slunits. Accel eration g=9. 81;
paraneter Real k1_nnp(unit="nB"/s/V') = 0.56e-6, k2_nnp(unit="m3/s/V') = 0.56e-6;
paraneter Real gl _nnp=0. 30, g2_nnp=0. 30;

// lnitial tank |evels

par amet er Model i ca. Slunits. Length x1_0 = 0.06270;
par anet er Modelica. Slunits. Length x2_0 = 0. 06044;
par amet er Model i ca. Slunits. Length x3_0 = 0.02400;
par anet er Modelica. Slunits. Length x4_0 = 0. 02300;

/| Tank |evels
Model i ca. Sl units. Length x1(start=x1_0, mi n=0.0001/*, max=0. 20*/);
Model i ca. Sl uni ts. Length x2(start=x2_0, mi n=0. 0001/ *, max=0. 20*/) ;
Model i ca. Sl uni ts. Length x3(start=x3_0, mi n=0. 0001/ *, max=0. 20*/) ;
Model i ca. Sl uni ts. Lengt h x4(start=x4_0, mi n=0. 0001/ *, max=0. 20*/) ;

/1 | nputs
i nput Modelica. Slunits. Vol tage ul;
i nput Mbddelica. Slunits. Vol t age u2;

equati on
der (x1) = -al/Al*sqrt(2*g*x1l) + a3/Al*sqgrt(2*g*x3) +
gl_nmp*k1l_nnp/ Al*ul;
der (x2) = -a2/ A2*sqrt(2*g*x2) + a4/ A2*sqrt(2*g*x4) +
g2_nmp*k2_nnp/ A2*u2;
-a3/ A3*sqrt (2*g*x3) + (1-92_nnp)*k2_nnp/ A3*u2;
-a4l AMA*sgrt(2*g*x4) + (1-gl_nnp)*kl_nnp/ Ad*ul;

der (x3

) =
der (x4) =

end QuadTank;

Let's begin with the the example, copy and paste the Modelica code and save it into QuadTank. no and open a
Python script file. We start by importing the necessary objects:

fromscipy.io.matlab. m o i nport | oadnat
import matplotlib. pyplot as plt
i mport nunpy as N

from pynodel i ca i nport conpile_jnu
frompyjm inmport JMJU\bdel

The input data is stored in gt _par _est _dat a. mat which can be found in the Pyt hon/ pyj ni / exanpl es/ fil es
catalogue in the IModelica.org install folder. Copy it into your working directory and paste the following com-
mands to load the data-file and extract the data trajectories:

data = | oadmat (' gt _par_est_dat a. mat' , appendnat =Fal se)

# Extract data series

t_neas = data['t'][6000::100,0]-60
ul = data['ul_d'][6000:: 100, 0]

u2 data['u2_d'][6000:: 100, 0]

The trajectories have now been extracted and needs to be stacked into a data matrix with the first column as the
time vector and the following columnstheinput of u1 and u2. The names of the variables needs a so be connected
in the input object:

# Build input trajectory matrix for use in sinulation
u_data = N.transpose(N. vstack((t_neas, ul, u2)))

i nput_object = (['ul','u2'], u_data)

Next, we compile and load the model:

# Compile JMJ
jmu_name = conpile_jnu(' QuadTank', 'QuadTank.no')
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# Load nodel
nmodel = JMJUMWbdel (j mu_nane)

Now that the model is compiled and the input has been adapted, let's give the information to the simulate method
and smulate;

# Simulate nodel with input trajectories
res = nodel .simulate(final _tine=60, input=input_object)

The result isretrieved by accessing ther es variable as a dictionary with the variable name as key:

x1 sim= res['x1"']
x2_sim= res['x2']
x3_sim= res['x3"]
x4_sim= res['x4']
ul sim= res['ul']
u2_sim= res['u2']
t_sim =res['tinme']

And then plotted with the help from mat pl ot 1 i b:

plt.figure(l)
plt.subplot(2,2,1)
plt.plot(t_simx3_sim
plt.title('x3")

pl t.subplot (2,2, 2)
plt.plot(t_simx4_sim
plt.title('x4")

pl t.subpl ot (2, 2, 3)
plt.plot(t_simx1l_sim
plt.title('x1")
plt.xlabel ("t[s]"')

pl t.subplot (2, 2, 4)
plt.plot(t_simx2_sim
plt.title('x2")
plt.xlabel ("t[s]"')
plt.show()

plt.figure(2)
plt.subplot(2,1,1)
plt.plot(t_simul_sim'r")
plt.title('ul")
plt.subplot(2,1,2)
plt.plot(t_simu2_sim'r")
plt.title('u2")

plt.xlabel ("t[s]")

pl t.show()

In Figure C.2, “Tank levels’ the result of the tank levels are shown and in Figure C.3, “Input trgjectories’ the
input signals are shown.
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Figure C.2. Tank levels
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Figure C.3. Input trajectories
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3.2.2. Simulation of a discontinuous system

The model to be simulated in this example is an electric circuit. The model is depicted in Figure C.4, “Electric
Circuit” and consists of resistances, inductors and a capacitor. The circuit is connected to a voltage source which
generates a square-wave with an amplitude of 1.0 and a frequency of 0.6 Hz. The model is also available from
the examplesinthefileRLC G rcuit. no.

Figure C.4. Electric Circuit
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This example assumesthat thefileRLC_Ci rcui t . no islocated in the working directory.

Start by creating a Python script file and write (or copy paste) the command for importing the model object and
for compiling a model together with the library used for plotting:

# lnmport the function for conpilation of nbdels and the JMUwbdel class
from pynodel i ca i nport conpile_jnu
frompyjm inmport JMJ\Vbdel

# lnport the plotting library
inmport matplotlib. pyplot as plt

Next, we compile and load the model:

# Conpi | e nodel
jmu_name = conpile_jnu("RLC Circuit_Square","RLC Circuit.n")

# Load nodel
ric = JMUMbdel (j mu_nane)

Now we are ready to simulate our model. We areinterested in simulating the model from 0.0 to 20.0 seconds. The
start time is default to 0.0 so no need to change that, but the final time needs to be changed:

res = rlc.sinmulate(final _tinme=20.0) # Simulate the nodel from0.0 to 20.0 seconds

After asuccessful simulation the statistics are printed in the prompt and the results are stored in the variabler es.
To view the result, we have to retrieve information about the variables we are interested in which is easily done
in the following way:

square_y = res['square.y']
resistor_v =res['resistor.v']
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i nductorl i
time

= res['inductorl.i']

=res['tine']

And then plotted with mat pl ot 1 i b,

plt.figure(1)

plt.plot(tine, square_y, tine, resistor_v, tine, inductorl i)
plt.legend(('square.y', 'resistor.v',"inductorl.i'))
plt.show()

The simulation result is shown in Figure C.5, “ Simulation result”.

Figure C.5. Simulation result
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3.2.3. Simulation with sensitivities

This example will show how to use IModelica.org to simulate an Optimica model and cal culate sensitivities of
the state variables with respect to a number of free parameters.

The model equationsistaken from the Robertson examplein the Sundials suite (https.//computation.linl.gov/casc/
sundials/main.html) and the model is shown in the code below.

optim zati on Robertson
paramet er Real pl(free=true)=0.040;
paranet er Real p2(free=true)=1.0e4;
paramet er Real p3(free=true)=3.0e7;

Real yi(start=1.0, fixed=true);
Real y2(start=0.0, fixed=true);
Real y3(start=0.0);
equati on
der (yl) = -pl*yl + p2*y2*y3;
der(y2) = pl*yl - p2*¥y2*y3 - p3*(y2*y2);
0.0 =yl +y2 +y3 - 1;
end Robertson;

In the model, we have set the parameters to free which means that we want to calculate sensitivities of the states
with respect to the free parameters.

Let's begin with the the example. Copy and paste the Optimica code and save it into Rober t son. nop, then open
a Python script file. We start by importing the necessary objects:

# lnmport the function for conpilation of nbdels and the JMUwbdel cl ass
from pynodel i ca i nport conpile_jnu
frompyjm inmport JMJ\Vbdel

# lnmport the plotting library
import matplotlib.pyplot as plt
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Next, we compile and load the model:

# Conpi | e nodel
jmu_name = conpil e_j mu("Robertson", " Robertson. nop")

# Load nodel
nmodel = JMJUMbdel (j mu_nane)

Note that sensitivity computations are currently only supported for IMUModels. Now that the model is loaded,
we have to change an option to activate the sensitivity calculations and also set the absol ute tolerances:

# Get and set the options

opts = model . si nul at e_opti ons() # Get the options

opts['IDA options']['atol'] = [1.0e-8, 1.0e-14, 1.0e-6] # Change the tol erance

opts['I DA options']['sensitivity'] = True # Activate the sensitivity cal cul ations
opts['ncp'] = 400 # Change the nunber of conmmunication points

Now simul ate the model:

res = nodel .simulate(final _tinme=4, options=opts)

Thesensitivity resultsarestored asd{ vari abl e nane}/ d{ par anet er nane} intheresult object. Weareinterested
in the following sensitivities:

dyldpl = res['dyl/dpl']
dy2dpl = res['dy2/dpl']
dy3dpl = res['dy3/dpl']

time = res['tine']

To plot the trajectories using mat pl ot | i b, use the following commands:
plt.plot(tine, dyldpl, tine, dy2dpl, time, dy3dpl)
plt.legend(('dyl/dpl', 'dy2/dpl', 'dy3/dpl'))

pl t.show()

In Figure C.6, “ Sensitivity results.” the sensitivities are plotted.

Figure C.6. Sensitivity results.
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1. Dynamic optimization of DAEs using direct colloca-
tion with JIMUs

The direct collocation method supported by JModelica.org can be used to solve dynamic optimization problems,
including optimal control problems and parameter optimization problems. In the collocation method, the dynamic
model variable profiles are approximated by piecewise polynomials. This method of approximating a differential
equation correspondsto afixed step implicit Runge-Kutta scheme, where the mesh defines the length of each step.
Also, the number of collocation pointsin each element, or step, needsto be provided. This number correspondsto
the stage order of the Runge-K uttascheme. The sel ection of mesh isanal ogousto the choice of step lengthin aone-
step algorithm for solving differential equations. Accordingly, the mesh needsto be fine-grained enough to ensure
sufficiently accurate approximation of the differential constraint. For an overview of simultaneous optimization
algorithms, see [2]. The algorithm IPOPT is used to solve the non-linear program resulting from collocation.

The collocation method implemented in IModelica.org requires that the model to be optimized does not contain
discontinuities such asif equations, when clauses or integer variables.

The mathematical formulation of the algorithm can be found in the IMI API documentation.

The collocation algorithm provides a number of options, summarized in Table D.1, “Options for the IMU and
collocation-based optimization algorithm”.

Table D.1. Optionsfor the IMU and collocation-based optimization algorithm

Option Default Description

n_e 50 Number of elements of the finite element mesh.

n_cp 3 Number of collocation pointsin each element. Values
between 1 and 10 are supported.

hs Equidistant pointsusing | A vector containing n_e elements representing the fi-

defaultn_e nite element lengths. The sum of all element should

equal to 1.

bl ocki ng_f actors None (not used) A vector of blocking factors. Blocking factors are

specified by avector of integers, where each entry

in the vector corresponds to the number of elements
for which the control profile should be kept constant.
For example, the blocking factor specification [2,1,5]
meansthat u 0=u_landu 3=u 4=u 5=u 6=u 7 as
suming that the number of elementsis 8. Notice that
specification of blocking factorsimplies that controls
are present in only one collocation point (thefirst) in
each element. The number of constant control levelsin
the optimization interval is equal to the length of the
blocking factor vector. In the example above, thisim-
pliesthat there are three constant control levels. If the
sum of the entries in the blocking factor vector is not
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Option Default Description

equal to the number of elements, the vector is normal-
ized, either by truncation (if the sum of the entriesis
larger than the number of element) or by increasing the
last entry of the vector. For example, if the number of
eementsis 4, the normalized blocking factor vector in
the exampleis[2,1,1]. If the number of elementsis 10,
then the normalized vector is[2,1,7].

init_traj None (i.e. not used, set Variabletrgjectory data used for initializa-
thisargument to activate |tion of the optimization problem. The da-
initialization) tais represented by an object of the type

pyj m . common. i 0. Resul t Dynol aText ual .

resul t _mode ‘default’ Specifies the output format of the optimization re-
sult. 'default’ gives the the optimization result at

the collocation points. 'element_interpolation' com-
putes the values of the variable trajectories using

the collocation interpolation polynomials. The op-
tion 'n_interpolation_points' is used to specify the
number of evaluation points within each finite ele-
ment. 'mesh_interpolation' computes the values of the
variable trajectories at points defined by the option
‘result_mesh'.

n_i nterpol ati on_poi nts|20 Number of interpolation pointsin each finite el ement
if the result reporting option result_mode is set to
‘element_interpolation'.

resul t _nmesh None A vector of time points at which the the optimization
result is computed. This option is used if result_mode
is set to 'mesh_interpolation'.

result_file_name Empty string (default gen- | Specifies the name of the file where the optimization
erated filename will be | result iswritten. Setting this option to an empty string
used) resultsin adefault file name that is based on the name

of the optimization class.

resul t _f or mat ‘txt' Specifiesin which format to write the result. Currently
only textual mode is supported.

wite_scal ed_result False Write the scaled optimization result if set to true. This
option isonly applicable when automatic variable scal-
ing is enabled. Only for debugging use.

In addition to the options for the coll ocation algorithm, |POPT options can a so be set by modifying the dictionary
| POPT_opt i ons contained in the collocation algorithm options object. Here, al valid IPOPT options can be spec-
ified, see the IPOPT documentation for further information. For example, setting the option max_i ter:

opts[' I POPT options']['max_iter'] = 300

makes |POPT terminate after 300 iterations even if no optimal solution has been found.
Some statistics from IPOPT can be obtained by issuing the command:

res_opt.sol ver.opt_coll _ipopt_get statistics()

The return argument of this function can be found by using the interactive help:

hel p(res. sol ver. opt _col | _i popt _get _statistics)
Get statistics fromthe |ast optimzation run.

Ret urns: :
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retur n_st atus --
Return status from | POPT.

nbr_iter --
Nunber of iterations.

obj ective --
Fi nal val ue of objective function.

total _exec tine --
Execution tine.

1.1. Examples

1.1.1. Optimal control

This tutoria is based on the Hicks-Ray Continuously Stirred Tank Reactors (CSTR) system. The model was
originally presented in [1]. The system has two states, the concentration, ¢, and the temperature, T. The control
input to the system is the temperature, Tc, of the cooling flow in the reactor jacket. The chemical reaction in the
reactor is exothermic, and also temperature dependent; high temperature resultsin high reaction rate. The CSTR
dynamicsis given by:

_ Fyegdd) oC())

c(t) = -kqc (t)gEdlvR/T(t)
. FoTnT| dHk
T(e) = d%“”- e enaivk/ 0+ 2L (Te () -T(t))

Thistutorial will cover the following topics:

* How to solve a DAE initialization problem. The initialization model have eguations specifying that all deriva-
tives should be identically zero, which implies that a stationary solution is obtained. Two stationary points,
corresponding to different inputs, are computed. We call the stationary points A and B respectively. Point A
corresponds to operating conditions where the reactor is cold and the reaction rate is low, whereas point B
corresponds to a higher temperature where the reaction rate is high. For more information about the DAE ini-
tialization algorithm, see the IMI APl documentation.

» Anoptimal control problem is solved where the objective is to transfer the state of the system from stationary
point A to point B. The challenge isto ignite the reactor while avoiding uncontrolled temperature increase. It is
also demonstrated how to set parameter and variable valuesin amodel. M oreinformation about the simultaneous
optimization algorithm can be found at JIModelica.org APl documentation.

» The optimization result is saved to file and then the important variables are plotted.

The Python commands in this tutorial may be copied and pasted directely into a Python shell, in some cases with
minor modifications. Alternatively, you may copy the commandsinto atext file, e.g., cstr. py.

Start the tutorial by creating a working directory and copy the file $JMODELI CA_HOVE/ Pyt hon/ pyj mi / exam
pl es/ fil es/ CSTR nop to your working directory. An on-line version of CSTR. nop is aso available (depending
on which browser you use, you may have to accept the site certificate by clicking through a few steps). If you
choose to create Python script file, save it to the working directory.

1.1.1.1. Compile and instantiate a model object

The functions and classes used in the tutorial script need to be imported into the Python script. This is done by
the following Python commands. Copy them and paste them either directly into your Python shell or, preferably,
into your Python script file.

i mport nunpy as N
import matplotlib.pyplot as plt

from pynodel i ca i nport conpile_jnu
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frompyjm inmport JMJU\Vbdel

Before we can do operations on the model, such as optimizing it, the model file must be compiled and the resulting
DLL fileloaded in Python. These steps are described in more detail Section 4.

# Conpile the stationary initialization nodel into a JMJ
jmu_name = conpile_jm("CSTR CSTR I nit", " CSTR nmop",
conpi | er _opti ons={"enabl e_vari abl e_scal i ng": True})

# load the JMJ
init_nodel = JMUMWbdel (j mu_nane)

Notice that automatic scaling of the model is enabled by setting the compiler option enabl e_vari abl e_scal i ng
to true. At this point, you may open the file CSTR. nop, containing the CSTR model and the static initialization
model used in this section. Study the classes CSTR. CSTRand CSTR. CSTR | ni t and make sure you understand the
models. Before proceeding, have alook at the interactive help for one of the functions you used:

hel p(conpi | e_j mu)
1.1.1.2. Solve the DAE initialization problem

In the next step, we would like to specify the first operating point, A, by means of a constant input cooling tem-
perature, and then solve the initialization problem assuming that all derivatives are zero.

# Set inputs for Stationary point A
Tc_0_A = 250
init_nodel.set('Tc', Tc_0_A)

# Solve the DAE initialization systemw th | popt
init_result = init_nodel.initialize()

(%)

tore stationary point A
init_result['c'][0]

init_result["T ][0]

— O #*

o o
=

I 1 o

_A
0 A
# Print some data for stationary point A
print(' *** Stationary point A ***')
print('Tc = %' % Tc_0_A)

print('c %' %c_0_A

print(‘T = %' %T_0_A)

Notice how the method set is used to set the value of the control input. The initialization algorithm isinvoked by
calling the IMUvbdel methodi ni ti al i ze, which returnsaresult object from which theinitialization result can be
accessed. Thei ni ti al i ze method relies on the algorithm 1POPT for computing the solution of the initialization
problem. The values of the states corresponding to point A can then be extracted from the result object. Look
carefully at the printoutsin the Python shell to see a printout of the stationary values. Display the help text for the
i nitialize method and take a moment to look through it. The procedure is now repeated for operating point B:

# Set inputs for Stationary point B
Tc_0_B = 280
init_nodel.set('Tc', Tc_0_B)

# Solve the DAE initialization systemw th |popt
init_result = init_nodel.initialize()

# Store stationary point B
c_0B=init_result['c'][0]
TOB=init_result['T ][0]

# Print some data for stationary point B
print(' *** Stationary point B ***')
print('Tc = %' % Tc_0_B)

print('c = %' %c_0_B)

print('T = %" %T_0_B)

We have now computed two stationary points for the system based on constant control inputs. In the next section,
these will be used to set up an optimal control problem.
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1.1.1.3. Solving an optimal control problem

The optimal control problem we are about to solveis given by:

150
minumj (cref-c(6)) 24 (177 -1 (6) ) 2o (72 - T (6) ) e

0
subject to

230<u(t) <370
T(t) <350

and is expressed in Optimica format in the class CSTR. CSTR_Opt in the CSTR. nop file above. Have alook at this
class and make sure that you understand how the optimization problem is formulated and what the objectiveis.

Direct collocation methods often require good initial guesses in order to ensure robust convergence. Since initial
guesses are needed for all discretized variables along the optimization interval, simulation provides a convenient
mean to generate state and derivative profiles given an initial guess for the control input(s). It is then convenient
to set up a dedicated model for computation of initial trajectories. In the model CSTR. CSTR I nit _Opti mi zati on
in the CSTR. nop file, astep input is applied to the system in order obtain an initial guess. Natice that the variable
namesin theinitialization model must match those in the optimal control model. Therefore, also the cost function
isincluded in the initialization model.

First, compile the model and set model parameters:

# Conpile the optim zation initialization nodel
jmu_name = conpile_jmu("CSTR CSTR I nit_Optim zation", " CSTR nop")

# Load the nodel
init_simnodel = JMJWbdel (j mu_nane)

# Set nodel paraneters
init_simnodel.set('cstr.c_init',c_0_A)
init_simnodel.set('cstr.T_init', T _0_A)
init_simnodel.set('c_ref',c_0_B)
init_simnodel.set('T_ref', T_0_B)
init_simnodel.set('Tc_ref', Tc_0_B)

Having initialized the model parameters, we can simulate the model using the si nul at e function.
res = init_simunodel.sinmulate(start_tine=0.,final_tine=150.)

The method si nul at e first computes consistent initial conditions and then simulates the model in the interval 0
to 150 seconds. Take a moment to read the interactive help for the si nmul at e method.

The simulation result object is returned and to retrieve the simul ation data use Python dictionary accessto retrieve
the variable trajectories.

# Extract variable profiles
c_init_simrres['cstr.c']
T init_sinrFres['cstr.T ]
Tc_init_sinFres['cstr.Tc']
t_init_sim=res['time']

# Plot the results
plt.figure(l)

plt.clf()

pl t. hol d( True)

plt. subpl ot (311)
plt.plot(t_init_simc_init_sim
plt.grid()

pl t.yl abel (' Concentration')
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pl t. subpl ot (312)
plt.plot(t_init_simT_init_sim
plt.grid()
plt.yl abel (' Tenperature')

pl t. subpl ot (313)
plt.plot(t_init_simTc_init_sim
plt.grid()

pl t.yl abel (' Cooling tenperature')
plt.xlabel ("tine')

pl t.show()

L ook at the plots and try to relate the trgjectories to the optimal control problem. Why isthisagood initial guess?

Once theinitial guessis generated, we compile the model containing the optimal control problem:

# Conpi |l e nodel
jmu_nanme = conpile_jmu("CSTR CSTR Opt", "CSTR nop")

# Load nodel
cstr = JMUMbdel (j mu_nane)

We will now initialize the parameters of the model so that their values correspond to the optimization objective
of transferring the system state from operating point A to operating point B. Accordingly, we set the parameters
representing the initial values of the statesto point A and the reference values in the cost function to point B:

# Set reference val ues
cstr.set(' Tc_ref', Tc_0_B)
cstr.set('c_ref',c_0_B)
cstr.set('T_ref', T_0_B)

# Set initial values
cstr.set('cstr.c_init',c_0_A)
cstr.set('cstr.T_init', T_0_A)

Collocation-based optimization algorithms often require agood initial guessin order to achieve fast convergence.
Also, if the problem is non-conve, initialization is even more critical. Initial guesses can be provided in Optimica
by thei ni ti al Guess attribute, seethe CSTR nop file for an example for this. Notice that initialization in the case
of collocation-based optimization methods means initialization of all the control and state profiles as afunction of
time. In some cases, it is sufficient to use constant profiles. For this purpose, thei ni ti al Guess attribute works
well. In more difficult cases, however, it may be necessary to initialize the profiles using simulation data, where
an initial guess for the input(s) has been used to generate the profiles for the dependent variables. This approach
for initializing the optimization problem is used in this tutorial.

We are now ready to solve the actual optimization problem. Thisis done by invoking the method optimize:
n_e = 100 # Nunber of el enents

# Set options

opt_opts = cstr.optim ze_options()
opt_opts['n_e'] = n_e

opt _opts['init_traj'] =res.result_data

res = cstr.optimnm ze(opti ons=opt_opts)

In this case, we would like to increase the number of finite elements in the mesh from 50 to 100. Thisis done by
setting the corresponding option and provideit as an argument to the opt i ni ze method. Y ou should see the output
of Ipopt in the Python shell as the algorithm iterates to find the optimal solution. Ipopt should terminate with a
message like 'Optimal solution found' or 'Solved to an acceptable level' in order for an optimum to be found. The
optimization result object is returned and the optimization dataare stored inr es.

We can now retrieve the trgjectories of the variables that we intend to plot:

# Extract variable profiles
c_res=res['cstr.c']
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T res=res['cstr.T']
Tc_res=res['cstr.Tc']
time_res = res['tine']

c_ref=res['c_ref']
T ref=res['T ref']
Tc_ref=res[' Tc_ref']

Finally, we plot the result using the functions available in matplotlib:

# Plot the result

plt.figure(2)

plt.clf()

pl t. hol d( True)

plt. subpl ot (311)

plt.plot(tine_res,c_res)
plt.plot([tinme_res[O0],tine_res[-1]],[c_ref,c_ref],'--")
plt.grid()

plt.yl abel (' Concentration')

pl t. subpl ot (312)

plt.plot(tine_res, T_res)
plt.plot([tinme_res[O0],tine_res[-1]],[T_ref, T ref],"'--")
plt.grid()

plt.yl abel (' Tenperature')

pl t. subpl ot (313)

plt.plot(tine_res, Tc_res)
plt.plot([tinme_res[O0],tine_res[-1]],[Tc_ref,Tc_ref],'--")
plt.grid()

plt.ylabel (' Cooling tenperature')

plt.xlabel ("tinme')

plt.show()

Notice that parameters are returned as scalar values whereas variables are returned as vectors and that this must
be taken into account when plotting. Y ou should now see the plot shown in Figure D.1, “Optimal profiles for the
CSTR problem.”.

FigureD.1. Optimal profilesfor the CSTR problem.
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Take a minute to analyze the optimal profiles and to answer the following questions:
1. Why isthe concentration high in the beginning of the interval?

2. Why isthe input cooling temperature high in the beginning of the interval ?
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1.1.1.4. Verify optimal control solution

Solving optimal control problems by means of direct collocation implies that the differential equation is approxi-
mated by a discrete time counterpart. The accuracy of the solution is dependent on the method of collocation and
the number of elements. In order to assess the accuracy of the discretization, we may simulate the system using
a DAE solver using the optimal control profile as input. With this approach, the state profiles are computed with
high accuracy and the result may then be compared with the profiles resulting from optimization. Notice that this
procedure does not verify the optimality of the resulting optimal control profiles, but only the accuracy of the
discretization of the dynamics.

The procedure for setting up and executing this simulation is similar to above:

# Simulate to verify the optinmal solution
# Set up the input trajectory

t =tinme_res

u = Tc_res

u_traj = N transpose(N. vstack((t,u)))

# Conpile the Modelica nodel to a JMJ
jmu_nanme = conpile_jmu("CSTR CSTR', "CSTR npp")

# Load nodel
si m nodel = JMUMbdel (j mu_nane)

simnodel .set('c_init',c_0_A)
simnodel .set('T_init', T_0_A)
si m nodel . set (' Tc',u[0])

res = simnodel.simulate(start_tinme=0.,final_tinme=150.,
input=('Tc',u_traj))

Finally, we load the simulated data and plot it to compare with the optimized trajectories:

# Extract variable profiles
c_sinFres['c']

T simrres[' T']

Tc_sinFres[' Tc']
time_sim=res['tine']

# Plot the results

plt.figure(3)

plt.clf()

pl t. hol d( True)

pl t. subpl ot (311)
plt.plot(tine_res,c_res,'--")
plt.plot(tine_simc_sim
plt.legend(('optimzed','simulated'))
plt.grid()

plt.yl abel (' Concentration')

pl t. subpl ot (312)
plt.plot(time_res, T res,'--")
plt.plot(tine_simT_sim
plt.legend(('optim zed',"'simnmulated'))
plt.grid()

plt.yl abel (* Tenperature')

pl t. subpl ot (313)

plt.plot(tine_res, Tc_res,"'--")
plt.plot(tine_simTc_sim
plt.legend(('optimzed',"'simlated'))
plt.grid()

pl t.yl abel (' Cooling tenperature')
plt.xlabel ("tinme')

pl t.show()

Y ou should now seethe plot shownin Figure D.2, “Optimal control profilesand simulated trajectories correspond-
ing to the optimal control input.”.
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Figure D.2. Optimal control profiles and simulated trajectories corresponding to the
optimal control input.
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Discuss why the simulated trajectories differs from the optimized counterparts.

1.1.1.5. Exercises

After completing the tutorial you may continue to modify the optimization problem and study the results.
1. Remove the constraint on cstr.T. What is then the maximum temperature?

2. Play around with weights in the cost function. What happensif you penalize the control variable with alarger
weight? Do a parameter sweep for the control variable weight and plot the optimal profilesin the same figure.

3. Add terminal constraints (‘cstr.T(final Time)=someParameter') for the states so that they are equal to point B
at the end of the optimization interval. Now reduce the length of the optimization interval. How short can you
make the interval ?

4. Try varying the number of elements in the mesh and the number of collocation points in each interval. 2-10
collocation points are supported.

1.1.1.6. References

[1] G.A. Hicks and W.H. Ray. Approximation Methods for Optimal Control Synthesis. Can. J. Chem. Eng.,
40:522-529, 1971.

[2] Bieger, L., A. Cervantes, and A. Wéachter (2002): "Advancesin simultaneous strategies for dynamic optimiza-
tion." Chemical Engineering Science, 57, pp. 575-593.

1.1.2. Minimum time problems

Minimum time problems are dynamic optimization problems where not only the control inputs are optimized,
but also the final time. Typically, elements of such problems include initial and terminal state constraints and an
objective function where the transition time is minimized. The following example will be used to illustrate how
minimum time problems are formulated in Optimica. We consider the optimization problem:

mint
o)

subject to the Van der Pol dynamics:
X = (1-x3)x;-xp+u, x1(0)=0
XZ =Xy X2(0)=1

and the constraints:
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x(tr) =0, x,(tr) =0

-l<su(t) <1

This problem is encoded in the following Optimica specification:

optimzation VDP_Opt_Mn_Tine (objective = finalTine,
startTine = 0,

final Ti me(free=true, m n=0.2,initial Guess=1))

/] The states
Real x1(start
Real x2(start

0, fi xed=true);
1, fixed=true);

/] The control signal
i nput Real u(free=true, m n=-1, max=1);

equati on
/1 Dynam c equati ons

der(x1) = (1 - x272) * x1 - x2 + u;
der (x2) = x1;
constrai nt

/1 terminal constraints
x1(final Ti me) =0;
x2(final Ti me) =0;

end VDP_Opt _M n_Ti ne;

Notice how the class attribute fi nal Ti me is set to be free in the optimization. The problem is solved by the
following Python script:

# Inport nunerical libraries
i mport nunpy as N
i mport matplotlib.pyplot as plt

# Inport the JModelica.org Python packages
from pynodel i ca i nport conpile_jnmu
frompyjm inmport JMIVbdel

nmodel _nane = ' VDP_pack. VDP_Opt _M n_Ti ne'
jmu_name = conpile_jrmu('VDP_OCpt_Mn_Tine', 'VDP_Opt_M n_Ti me. nop')

vdp JMUModel (j mu_nane)
res vdp. opti m ze()

# Extract variable profiles
xl=res['x1']

x2=res[' x2"]

u=res['u']

tf=res['final Tine']
t=res['tine']

# Pl ot
plt.figure(l)
plt.clf()

plt. subpl ot (311)
plt.plot(t,x1)
plt.grid()
plt.ylabel (*x1')

pl t. subpl ot (312)
plt.plot(t,x2)
plt.grid()
plt.ylabel (' x2")

pl t. subpl ot (313)
plt.plot(t,u)
plt.grid()
plt.ylabel ("u")
plt.xlabel ("tine')
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pl t.show()

The resulting control and state profiles are shown in Figure D.3, “Minimum time profiles for the Van der Pol
Oscillator.”. Notice the difference as compared to Figure Figure 6.1, “Optimal profiles for the VDP oscillator”,
where the Van der Pol oscillator system is optimized using a quadratic objective function.

Figure D.3. Minimum time profilesfor the Van der Pol Oscillator.

time

1.1.3. Parameter optimization

Inthistutoria it will be demonstrated how to solve parameter estimation problems. We consider a quadruple tank
system depicted in Figure 6.6, “A schematic picture of the quadruple tank process.”.

Figure D.4. A schematic picture of the quadruple tank process.
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The dynamics of the system are given by the differential equations:
Xp =- %M \/257 vy “1

X =- %@ M + 4, “2

X3 = A3\/257 L 22]](2 Up

Xy =-7, \/257 + E Zﬂkl Uy
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Where the parameter values are given in Table 6.3, “ Parameters for the quadruple tank process.”.

Table D.2. Parametersfor the quadruple tank process.

Parameter name Value Unit
A 4.9 cm?
aj 0.03 cm?
i 0.56 cm?vist
#; 0.3 vem?t

The states of the model are the tank water levels x1, x2, x3, and x4. The control inputs, ul and u2, are the flows
generated by the two pumps.

TheModelicamodel for the systemislocated in QuadTankPack.mop. Download thefileto your working directory
and open it in atext editor. Locate the class QuadTankPack. QuadTank and make sure you understand the model.
In particular, notice that all model variables and parameters are expressed in S units.

Measurement data, availablein gt_par_est data.mat, has been logged in an identification experiment. Download
also thisfile to your working directory.

Open atext fileand name it qt _par _est . py. Then enter the imports:

fromscipy.io.matl ab. m o i nport | oadmat
import matplotlib.pyplot as plt
i mport nunpy as N

from pynodel i ca i nport conpile_jnu
frompyjm inport JMIVbde

into the file. Next, we enter code to open the data file, extract the measurement time series and plot the measure-
ments:

# Load neasurenent data fromfile
data = | oadmat (' qt _par _est_dat a. mat', appendnat =Fal se)

# Extract data series
t_meas = data['t'][6000::100, 0] -60

yl neas = data['yl f'][6000:: 100, 0]/100
y2 _meas = data['y2 f'][6000:: 100, 0] /100
y3_neas = data['y3_d'][6000:: 100, 0]/100
y4 _meas = data['y4 d'][6000:: 100, 0]/ 100

ul = data['ul_d'][6000:: 100, 0]
u2 = data['u2_d'][6000:: 100, 0]

# Pl ot nmeasurenents and inputs
plt.figure(1)

plt.clf()
plt.subplot(2,2,1)
plt.plot(t_neas, y3_neas)
plt.title('x3")
plt.grid()
plt.subplot(2,2,2)
plt.plot(t_neas, y4_neas)
plt.title(' x4")
plt.grid()

plt.subplot (2,2, 3)
plt.plot(t_neas, yl _neas)
plt.title('x1")
plt.xlabel ("t[s]"')
plt.grid()

pl t.subplot (2,2, 4)
plt.plot(t_mneas, y2_neas)
plt.title('x2")
plt.xlabel ("t[s]")
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plt.grid()
plt.show()

plt.figure(2)
plt.clf()
plt.subplot(2,1,1)
plt.plot(t_neas, ul)
pl t. hol d(True)
plt.title('ul")
plt.grid()

pl t.subplot(2,1,2)
plt.plot(t_neas, u2)
plt.title('u2")
plt.xlabel ("t[s]")
pl t. hol d( True)
plt.grid()

pl t.show()

Y ou should now see two plots showing the measurement state profiles and the control input profiles similar to
Figure 6.7, “Measured state profiles.” and Figure 6.8, “Control inputs used in the identification experiment.”.

Figure D.5. Measur ed state profiles.
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Figure D.6. Control inputsused in the identification experiment.
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In order to evaluate the accuracy of nominal model parameter values, start by simulating the model, assuming that
the start values of the states are given by the state measurement at the start of the experiment. This assumption
can be expressed in the mode!:

nmodel Si m QuadTank
QuadTank qt;
i nput Real ul =
i nput Real u2 =
initial equation

t.ul;

gt.x1 = 0.0627;
gt.x2 = 0.06044;
qt.x3 = 0.024;
gt.x4 = 0.023;

end Si m QuadTank;

Notice that initial equations have been added to the model. Before the model is simulated, a matrix containing
theinput trajectoriesis created:

# Build input trajectory matrix for use in sinulation
u = N.transpose(N. vstack((t_neas, ul, u2)))

Now, the model can be simulated:

# compile JMJ
jmu_nanme = conpil e_jmu(' QuadTankPack. Si m QuadTank' , ' QuadTankPack. nop' )

# Load nodel
nmodel = JMUMbdel (j mu_nane)

# Sinmul ate nodel response with nom nal paraneters
res = nodel .simulate(i nput=(['ul","'u2'],u),start_tinme=0.,final_tine=60)

The simulation result can now be extracted:

# Load sinmul ation result
x1_sim= res['qt.x1"]
X2_sim= res['qt.x2"]
x3_sim= res['qt.x3"]
X4_sim= res['qt.x4']
t_sim =res['tine']

ul sim= res['ul']
u2_sim= res['u2']

and then plotted:

# Plot simulation result
plt.figure(l)
plt.subplot(2,2,1)
plt.plot(t_simx3_sim
pl t.subpl ot (2, 2, 2)
plt.plot(t_simx4_sim
pl t.subpl ot (2, 2, 3)
plt.plot(t_simxl_sim
pl t.subplot (2,2, 4)
plt.plot(t_simx2_sim
pl t.show()

plt.figure(2)
plt.subplot(2,1,1)
plt.plot(t_simul sim'r"')
plt.subplot(2,1,2)
plt.plot(t_simu2_sim'r"')
plt.show()

Figure 6.9, “Simulation result for the nominal model.” shows the result of the simulation.
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Figure D.7. Simulation result for the nominal model.
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Here, the simulated profiles are given by the green curves. Clearly, there is amismatch in the response, especially
for the two lower tanks. Think about why the model does not match the data, i.e., which parameters may have
wrong values.

The next step towards solving a parameter estimation problem isto identify which parametersto tune. Typically,
parameters which are not known precisely are selected. Also, the selected parameters need of course affect the
mismatch between model response and data, when tuned. In afirst attempt, we aim at decreasing the mismatch for
the two lower tanks, and therefore we select the lower tank outflow areas, al and a2, as parameters to optimize.
The Optimica specification for the estimation problem contained in the class QuadTankPack. QuadTank_Par Est :
optim zati on QuadTank_Par Est (objective=sunm((yl_meas[i] - qt.x1(t_neas[i]))"2 +
(y2_meas[i] - qt.x2(t_meas[i]))”2 for i in 1:N _neas),
start Ti me=0, fi nal Ti me=60)

/1 Initial tank |evels

paranet er Modelica. Slunits. Length x1_0 = 0. 06255;
par anet er Modelica. Slunits.Length x2_0 = 0.06045;
par anet er Modelica. Slunits. Length x3_0 = 0. 02395;
par anet er Model i ca. Slunits.Length x4_0 = 0.02325;

QuadTank qt (x1(fixed=true), x1_0=x1_0,
x2(fixed=true), x2_0=x2_0,
x3(fixed=true), x3_0=x3_0,
x4(fixed=true), x4_0=x4_0,
al(free=true,initial Guess
a2(free=true,initial Guess

0. 03e- 4, mi n=0, max=0. le-4),
0. 03e- 4, m n=0, max=0. le-4));

/1 Nunber of measurenent points
paraneter |nteger N neas = 61;
/] Vector of measurenment tines
paraneter Real t_meas[N_neas] = 0:60.0/(N_neas-1): 60;
[/ Measurenent values for x1
/] Notice that dummy val ues are entered here:
[/l the real measurenent values will be set from Python
paraneter Real yl neas[N_neas] = ones(N_neas);
/] Measurenent val ues for x2
paranet er Real y2 neas[N_neas] = ones(N_neas);
/1 lnput trajectory for ul
PRBS1 prbsi;
/1 lnput trajectory for u2
PRBS2 prbs2;
equati on
connect (prbsl.y, qt.ul);
connect (prbs2.y, qt.u2);
end QuadTank_Par Est ;
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The cost function is here given as a squared sum of the difference between the measured profilesfor x1 and x2 and
the corresponding model profiles. Also the, parameters al and a2 are set to be free, and are given initial guesses
aswell asbounds. Asfor the measurement data, parameter vectors are declared, but only dummy datais provided
in the model - the actual data values will be set from the Python script. Also, the input profiles are connected to
signal generators that outputs the same input profiles as those used in the experiment. Take some time to look at
QuadTankPack. nop and locate the classes used above.

Before the optimization problem can be solved, the Optimica specification needs to be compiled:

# Conpil e paraneter optim zati on nodel
jmu_nanme = conpil e_j nmu(" QuadTankPack. QuadTank_Par Est ", " QuadTankPack. nop")

# Load the nodel
qt _par _est = JMIModel (j nu_nane)

Next, we load the measurement data into the model:

# Nunber of measurenent points
N_neas = N.size(ul, 0)

# Set measurenent data into nodel

for i in range(0, N neas):
gt _par _est.set("t_neas["+ i +1 +"]",t_neas[i])
gt _par _est.set("yl neas["+ i+1 +"]",yl neas[i])
gt _par _est.set("y2_neas["+ i +1 +"]",y2 nmeas[i])

We are now ready to solve the optimization problem:

n_e = 100 # Nurmer of elenment in collocation algorithm
# Get an options object for the optim zation algorithm
opt_opts = qt_par_est.optim ze_options()

# Set the number of collocation points

opt_opts['n_e'] = n_e

# Sol ve paraneter optim zation problem
res = qt_par_est.optim ze(opti ons=opt _opt s)

Now, lets extract the optimal values of the parameters al and a2 and print them to the console:
# Extract optimal values of paranmeters

al_opt = res.final ("qt.al")

a2 opt =res.final ("qt.a2")

# Print optimal paraneter val ues

print('al: ' + str(al_opt*le4) + 'cm2')

print('a2: ' + str(a2_opt*led4) + 'cm2')

Y ou should get an output similar to:

al: 0.0266¢cnM2
a2: 0.0272cnt2

The estimated values are slightly smaller than the nominal values - think about why this may be the case. Also
note that the estimated values do not necessarily correspond to the physically true values. Rather, the parameter
values are adjusted to compensate for all kinds of modeling errors in order to minimize the mismatch between
model response and measurement data.

Next we plot the optimized profiles:

# Load state profiles

x1_opt = res["qgt.x1"]
x2_opt = res["qt.x2"]
x3_opt = res["qt.x3"]
x4_opt = res["qt.x4"]
ul_opt = res["qt.ul"]
u2_opt = res["qgt.u2"]
t_opt = res["tine"]
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# Pl ot

plt.figure(l)
plt.subplot(2,2,1)
plt.plot(t_opt,x3 opt,"'k")
plt.subplot(2,2,2)
plt.plot(t_opt,x4 opt,"'k")
plt.subplot (2,2, 3)
plt.plot(t_opt,x1 opt,"'k")
plt.subplot (2,2, 4)
plt.plot(t_opt,x2 opt,"'k")
plt.show()
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Y ou will seethe plot shown in Figure 6.10, “ State profiles corresponding to estimated values of al and a2.”.

Figure D.8. State profiles corresponding to estimated values of al and a2.
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The profiles corresponding to the estimated values of al and a2 are shown in black curves. As can be seen, the
match between the model response and the measurement data has been significantly increased. Is the behavior of
the model consistent with the estimated parameter values?

Never the less, There is till a mismatch for the upper tanks, especialy for tank 4. In order to improve the
match, a second estimation problem may be formulated, where the parameters al, a2, a3, a4 are free optimization
variables, and where the sgquared errors of all four tank levels are penalized. Take a minute to locate the class
QuadTankPack. QuadTank_Par Est 2 and make sure that you understand the model. Solve the optimization prob-
lem by typing the Python code:

# Conpi |l e second paraneter estimation nodel

jmu_name = conpil e_j mu(" QuadTankPack. QuadTank_Par Est 2", " QuadTankPack. nop")

# Load nodel
gt _par _est2 = JMUMbdel (j mu_nane)

# Nunmber of neasurement points
N_rmeas = N.size(ul, 0)

# Set neasurenent data into nodel
for i in range(0, N neas):

gt _par_est2.set("t_neas["+ i +1 +"]",t_meas[i])

qt _par_est2.set("yl neas["+i+1 +"]",yl neas[i])
gt _par_est2.set("y2 neas["+ i +1 +"]",y2 neas[i])
qt _par _est2.set("y3_neas["+ i +1 +"]",y3 neas[i])
gt _par_est2.set("y4 neas["+ i +1 +"]",y4 neas[i])

# Sol ve paraneter estination problem
res_opt2 = qt_par_est2.optim ze(opti ons=opt_opts)
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Next, we print the optimal parameter values:

# Get optimal paraneter val ues
al_opt2 = res_opt2.final ("qgt.al")

a2 opt2 =res_opt2.final ("qgt.a2")
a3_opt2 = res_opt2.final ("qgt.a3")
a4 _opt2 = res_opt2.final ("qgt.a4")

# Print optimal paraneter val ues

print('al:' + str(al_opt2*le4) + 'cm2')
print('a2:' + str(a2_opt2*led4) + 'cm2')
print('a3:' + str(a3_opt2*led4) + 'cm2')
print('a4:' + str(ad4_opt2*led4) + 'cm2')

The output in the console should be similar to:

al: 0. 0266¢nf'2
a2:0.0271cnf*2
a3: 0.0301cnf*2
a4:0.0293cnf*2

Think about the result - can you explain why the estimated value of &4 is dlightly smaller than the nominal value?
Finally, plot the state profiles corresponding to the estimated parameters:

# Extract state and input profiles

x1 opt2 = res_opt2["qt.x1"]
Xx2_opt2 = res_opt2["qt.x2"]
x3_opt2 = res_opt2["qgt.x3"]
x4_opt2 = res_opt2["qt.x4"]
ul opt2 = res_opt2["qt.ul"]
u2_opt2 = res_opt2["qt.u2"]
t_opt2 = res_opt2["tine"]
# Pl ot

plt.figure(1)
plt.subplot(2,2,1)
plt.plot(t_opt2,x3 opt2,'r")
pl t.subplot (2,2, 2)
plt.plot(t_opt2,x4 opt2,'r")
pl t.subplot (2,2, 3)
plt.plot(t_opt2,x1_opt2,'r")
pl t.subplot (2,2, 4)
plt.plot(t_opt2,x2_opt2,'r")
pl t.show()

Theresulting plot is shownin Figure D.9, “ State profiles corresponding to estimated values of al, a2, a3 and &4.” .

Figure D.9. State profiles corresponding to estimated values of al, a2, a3 and a4.
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Thered curves represent the case where al, a2, a3 and a4 has been estimated.

Take amoment to think about the results. Arethere other parametersthat could have been selected for estimation?

Having computed the parameter values that fits the data, we proceed to compute the standard deviations for the
parameter estimates. Thisinformation isvaluable when judging how accurate the estimatesare. For anintroduction
to statistical inference in parameter estimation problems, see [Eng2001].

The covariance matrix of the estimated parameter vector is given by the expression:

cov(p) =62(J7))"

where Jisthe Jacobian of theerror residual and ; isthe estimated measurement noise variance. In order to compute
the residual Jacobian, the sensitivity equations needs to be computed.

The model QuadTankPack. QuadTank_Sens?2 isused for the sensitivity smulation. Notice that the f r ee attribute
is used to mark the parameters for which sensitivities should be computed:

optim zati on QuadTank_Sens2

ext ends QuadTank (x1(fixed=true),x1 0 = 0.0627,
x2(fixed=true),x2_0 = 0.06044,
x3(fixed=true),x3_0 = 0.024,
x4(fixed=true),x4_0 = 0.023,

al(free=true),
a2(free=true),
a3(free=true),
ad(free=true));

end QuadTank_Sens2;

In afirst step to simulating the sensitivity equations for the model, we compile the model and set the optimal
parameter values:

# conpile JMJ
jmu_name = conpil e_j mu(' QuadTankPack. QuadTank_Sens2',
' QuadTankPack. nop' )

# Load nodel
nmodel = JMJUMWbdel (j mu_nane)

nmodel . set (' al', al_opt2)
nodel . set (' a2', a2_opt 2)
nmodel . set (' a3', a3_opt 2)
nodel . set (' a4', a4_opt 2)

Next, we set the | DA _option sensitivity totrue, and simulate the model:

# Get an options object
sens_opts = nodel . si mul at e_opti ons()

# Enabl e sensitivity conputations
sens_opts[' I DA options']['sensitivity'] = True

# Sinul ate sensitivity equations
sens_res = nmodel .sinmulate(input=(['ul",'u2'],u),start_tinme=0.,
final _time=60, options = sens_opts)

Using the results of sensitivity simulation, the Jacobian and the residual error vector can be created:

# CGet result trajectories

x1 sens = sens_res['x1']
x2_sens = sens_res['x2']
x3_sens = sens_res['x3']
x4_sens = sens_res['x4']

dxldal = sens_res['dx1l/dal']
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dx1lda2 = sens_res['dx1l/da2']
dx1da3 = sens_res['dx1/da3']
dxlda4 = sens_res['dx1l/da4']
dx2dal = sens_res['dx2/dal']
dx2da2 = sens_res[' dx2/da2']
dx2da3 = sens_res[' dx2/da3']
dx2da4 = sens_res[' dx2/da4']
dx3dal = sens_res['dx3/dal']
dx3da2 = sens_res['dx3/da2']
dx3da3 = sens_res[' dx3/da3']
dx3da4 = sens_res[' dx3/da4']
dx4dal = sens_res[' dx4/dal']
dx4da2 = sens_res[' dx4/da2']
dx4da3 = sens_res[' dx4/da3']
dx4da4 = sens_res[' dx4/dad']
t_sens = sens_res['tine']

# Create a trajectory object for interpolation
traj =Traj ect oryLi near | nt er pol ati on(t_sens,

N. transpose(N. vst ack((x1_sens, x2_sens, x3_sens, x4_sens,
dxldal, dx1lda2, dx1da3, dx1da4,
dx2dal, dx2da2, dx2da3, dx2da4,
dx3dal, dx3da2, dx3da3, dx3da4,
dx4dal, dx4da2, dx4da3, dx4da4))))

# Create Jacobi an
jac = N.zeros((61*4,4))

# Error vector
err = N zeros(61*4)

# Extract Jacobian and residual error infornation
i =0
for t_p in t_neas:
vals = traj.eval (t_p)
for j in range(4):
for k in range(4):
jac[i+j,k] = vals[0, 4% +k+4]
err[i] = vals[0,0] - yl neas[i/4]

err[i+1] = vals[0,1] - y2 neas[i/4]

err[i+2] = vals[0,2] - y3_ neas[i/4]

err[i+3] = vals[0,3] - y4 neas[i/4]
i =i +4

Notice the convention for how the sensitivity variables are named.

Finally, we compute and print the standard deviations for the estimated parameters:

# Conpute estimated variance of measurenent noice
v_err = N sun{err**2)/(61*4-2)

# Conpute JAT*J
A = N. dot (N. transpose(jac), j ac)

# Conpute paraneter covariance matrix
P=v_err*Nlinalg.inv(A)

# Conmpute standard devi ations for paraneters

sigma_al = N.sqrt (P[0, 0])
sigma_a2 = N.sqrt(P[1,1])
sigma_a3 = N.sqrt(P[2,2])
sigma_a4 = N.sqrt(P[3,3])
print "al: " + str(sens_res.final('al')) + ", standard deviation: " + str(signa_al)
print "a2: " + str(sens_res.final('a2')) + ", standard deviation: " + str(signma_a2)
print "a3: " + str(sens_res.final('a3")) + ", standard deviation: " + str(signa_a3)
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print "a4: " + str(sens_res.final('a4')) + ", standard deviation: " + str(signma_a4)

Y ou should now see the standard deviations for the estimated parameters printed.
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