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Chapter 1. Introduction
1. About JModelica.org

JModelica.org is an extensible Modelica-based open source platform for optimization, simulation and analysis of
complex dynamic systems. The main objective of the project is to create an industrially viable open source plat-
form for optimization of Modelica models, while offering a flexible platform serving as a virtual lab for algorithm
development and research. JModelica.org is intended to provide a platform for technology transfer where indus-
trially relevant problems can inspire new research and where state of the art algorithms can be propagated form
academia into industrial use. JModelica.org is a result of research at the Department of Automatic Control, Lund
University, [Jak2007] and is now maintained and developed by Modelon AB in collaboration with academia.

2. Mission Statement

To offer a community-based, free, open source, accessible, user and application-oriented Modelica environment
for optimization and simulation of complex dynamic systems, built on well-recognized technology and supporting
major platforms.

3. Technology

JModelica.org relies on the modeling language Modelica. Modelica targets modeling of complex heterogeneous
physical systems, and is becoming a de facto standard for dynamic model development and exchange. There
are numerous model libraries for Modelica, both free and commercial, including the freely available Modelica
Standard Library (MSL).

A unique feature of JModelica.org is the support for the extension Optimica. Optimica enables users to conve-
niently formulate optimization problems based on Modelica models using simple but powerful constructs for en-
coding of optimization interval, cost function and constraints.

The JModelica.org compilers are developed in the compiler construction framework JastAdd. JastAdd is based on
a number of different concepts, including object-orientation, aspect-orientation and reference attributed grammars.
Compilers developed in JastAdd are specified in terms of declarative attributes and equations which together
forms an executable specification of the language semantics. In addition, JastAdd targets extensible compiler
development which makes it easy to experiment with language extensions.

For user interaction JModelica.org relies on the Python language. Python offers an interactive environment suit-
able for scripting, development of custom applications and prototype algorithm integration. The Python packages
Numpy and Scipy provide support for numerical computation, including matrix and vector operations, basic linear
algebra and plotting. The JModelica.org compilers as well as the model executables/dlls integrate seamlessly with
Python and Numpy.

JModelica.org offers strong support for the Functional Mock-up Interface (FMI) standard. FMI specifies a format
for exchange of compiled dynamic models and it is supported by a large number of modeling and simulation tools,
including established Modelica tools such as Dymola, OpenModelica, and SimulationX. FMI defines a model
execution interface consisting of a set of C-function signatures for handling the communication between the model
and a simulation environment. Models are presented as ODEs with time, state and step events. FMI also specifies
that all information related to a model, except the equations, should be stored in an XML formated text-file. The
format is specified in the standard and specifically contains information about the variables, names, identifiers,
types and start attributes. A model is distributed in a zip-file with the extension '.fmu', these zip-files containing
the models are called FMUs (Functional Mock-up Units). FMI version 1.0 specifies two types of FMUs, either
Model Exchange or Co-Simulation. The difference between them is that in a Co-Simulation FMU, the integrator
for solving the system is contained in the model while in an Model Exchange FMU, an external integrator is needed
to solve the system. The JModelica.org compiler supports export of FMUs and FMUs can be imported into Python
using the Python packages included in the platform.

http://www.modelica.org
http://jastadd.org
http://www.python.org/
https://www.fmi-standard.org/
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4. Architecture

Figure 1.1. JModelica.org platform architecture.

The JModelica.org platform consists of a number of different parts:

• The compiler front-ends (one for Modelica and one for Modelica/Optimica) transforms Modelica and Optimica
code into a flat model representation. The compilers also check the correctness of model descriptions and reports
errors.

• The compiler back-ends generates C code and XML code for Modelica and Optimica. The C code contains
the model equations, cost functions and constraints whereas the XML code contains model meta data such as
variable names and parameter values. Export of Functional Mock-up Units (FMUs) is supported. There is also
the option to export flattened Modelica models, including equations, in XML format.

• The JModelica.org runtime library is written in C and contains supporting functions needed to compile the
generated model C code. Also, the runtime library contains an integration with CppAD, a tool for computation
of high accuracy derivatives by means of automatic differentiation to provide derivatives for optimization al-
gorithm. The runtime system also contains the functions provided in the FMI API.

• Currently, JModelica.org features four different algorithms for solving dynamic optimization problems. There
are three different algorithms based on direct collocation, which rely on the solver IPOPT for obtaining a solution
to the resulting NLP. The default algorithm is encoded in C and relies on CppAD for computing the NLP
derivatives. The other two algorithms are developed in Python and rely on CasADi for computing derivatives.
There is also a derivative free optimization algorithm for model calibration based on measurement data that is
applicable to FMUs.

• JModelica.org uses Python for scripting. For this purpose, JModelica.org provides a number of different Python
packages. The Assimulo package provides integration with state of the art DAE and ODE solvers (including
the SUNDIALS suite), PyFMI provides FMU import, whereas PyModelica interacts with the JModelica.org
compilers. Finally, PyJMI contains drivers for the optimization algorithms. All packages are available as
part of JModelica.org, and Assimulo and PyFMI are also available as stand alone Python packages from
www.assimulo.org and www.pyfmi.org.

5. Extensibility
The JModelica.org platform is extensible in a number of different ways:

• The JModelica.org platform supports export and import of FMUs, which are compliant with the FMI standard. In
addition, JModelica.org features a C interface for efficient evaluation of model equations, the cost function and
the constraints: the JModelica Model Interface (JMI). JMI also contains functions for evaluation of derivatives
and sparsity and is intended to offer a convenient interface for integration of numerical algorithms. FMI is the
default format for simulation, whereas JMI is the default interface for optimization.

http://www.assimulo.org
http://www.pyfmi.org
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• In addition to the FMI and JMI interfaces, JModelica.org supports export of flat Modelica models in XML
format. This format is based on FMI, and is suitable for integration with symbolic algorithms that can exploit
access to the equations in symbolic form.

• JastAdd produces compilers encoded in pure Java. As a result, the JModelica.org compilers are easily embedded
in other applications aspiring to support Modelica and Optimica. In particular, a Java API for accessing the flat
model representation and an extensible template-based code generation framework is offered.

• The JModelica.org compilers are developed using the compiler construction framework JastAdd. JastAdd fea-
tures extensible compiler construction, both at the language level and at the implementation level. This feature
is explored in JModelica.org where the Optimica compiler is implemented as a fully modular extension of the
core Modelica compiler. The JModelica.org platform is a suitable choice for experimental language design and
research.

An overview of the JModelica.org platform is given [Jak2010]
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Chapter 2. Installation
1. Supported platforms
JModelica.org is supported on Linux and Windows (Vista, 7) with 32-bit or 64-bit architectures.

2. Installation on Windows
Pre-built binary distributions for Windows are available in the Download section of www.jmodelica.org.

The Windows installer contains a binary distribution of JModelica.org, bundled with all required third-party soft-
ware components. A list of the third-party dependencies can be found in Section 2.1, “Dependencies”. The installer
sets up a pre-configured complete environment with convenient start menu shortcuts. Installation instructions are
found in Section 2.2, “Installation”.

2.1. Dependencies

As of JModelica.org version 1.9, all dependencies are bundled in the installer. They are listed below, each with
version number (where applicable) and link to corresponding web site.

• Applications

• Java 1.7 (JRE)

• MinGW (gcc 4.7.2)

• Python 2.7

• Libraries

• Ipopt 3.10.3

• SuperLU 4.1

• Beaver 0.9.6.1

• CppAD

• eXpat 2.1.0

• Minizip

• MSL (Modelica Standard Library)

• SUNDIALS 2.4.0

• Zlib 1.2.6

• CasADi

• Python packages

• Cython 0.18

• Distribute 0.6.35

• IPython 0.13.1

• JCC 1.18

www.jmodelica.org
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.mingw.org
http://www.python.org/
https://projects.coin-or.org/Ipopt
http://crd.lbl.gov/~xiaoye/SuperLU/
http://beaver.sourceforge.net/
http://www.coin-or.org/CppAD/
http://expat.sourceforge.net/
http://www.winimage.com/zLibDll/minizip.html
https://www.modelica.org/libraries
https://computation.llnl.gov/casc/sundials
http://www.zlib.net/
http://casadi.org
http://www.cython.org/
http://packages.python.org/distribute/
http://ipython.org/
https://pypi.python.org/pypi/JCC/
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• JPype 0.5.4.2

• lxml 3.1.0

• matplotlib 1.2.0

• nose 1.2.1

• NumPy 1.6.2

• Pyreadline 1.7.1

• SciPy 0.11.0

• wxPython 2.8

2.2. Installation

Follow these step-by-step instructions to install JModelica.org using the Windows binary distribution.

1. Download a JModelica.org Windows binary installer and save the executable file somewhere on your com-
puter.

2. Run the file by double-clicking and selecting "Run" if prompted with a security warning. This will launch
an installer which should be self-explanatory.

• In the Choose Components window, select which of the bundled Python packages that should be installed.
Make sure that any package not already installed on your computer is checked.

Figure 2.1. Selecting Python packages in the Choose components window.

2.3. Verifying the installation

Test the installation by starting a IPython or pylab shell from the JModelica.org start menu and run a few examples.
Starting the Python session from the Windows start menu will set all the environment variables required to run
the JModelica.org Python interface.

# Import and run the VDP_sim example and plot results
from pyjmi.examples import VDP_sim
VDP_sim.run_demo()

# Import and run the CSTR example and plot results
from pyjmi.examples import cstr
cstr.run_demo()

# Import and run the CSTR example using CasADi and plot results

http://jpype.sourceforge.net
http://lxml.de/
http://matplotlib.org/
https://nose.readthedocs.org/en/latest/
http://www.numpy.org/
http://packages.python.org/pyreadline/
http://www.scipy.org/
http://www.wxpython.org
http://www.jmodelica.org/binary
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from pyjmi.examples import cstr_casadi
cstr_casadi.run_demo()

2.4. Compilation from sources

For compiling JModelica.org from sources on Windows there is a Software Development Kit (SDK) available for
download. The SDK is a bundle of tools used to build JModelica.org from source code on Windows, please see
the SDK User's guide, which can be reached from the download site, for more information.

3. Installation on Linux systems
This section describes a procedure for compiling JModelica.org from sources on Linux. The instructions have
been verified to work on Ubuntu Linux release 12.04, 64bit.

3.1. Prerequisites

3.1.1. Installing pre-compiled packages

It is convenient to use a package management system, if available, of the Linux distribution to install the prereq-
uisites. On Ubuntu systems, the apt-get command line program may be used:

sudo apt-get -y install g++
sudo apt-get -y install subversion
sudo apt-get -y install gfortran
sudo apt-get -y install ipython
sudo apt-get -y install cmake
sudo apt-get -y install swig
sudo apt-get -y install ant
sudo apt-get -y install openjdk-6-jdk
sudo apt-get -y install python-dev
sudo apt-get -y install python-numpy
sudo apt-get -y install python-scipy
sudo apt-get -y install python-matplotlib
sudo apt-get -y install cython
sudo apt-get -y install python-lxml
sudo apt-get -y install python-nose
sudo apt-get -y install python-jpype
sudo apt-get -y install zlib1g-dev
sudo apt-get -y install libboost-dev

On Ubuntu 12.04, the bundled jcc version is too old. A new enough version can be installed using pip:

sudo apt-get -y install python-pip
sudo pip install jcc

The following versions of each package have been tested and verified to work. Please note that in some cases,
a minimum version is required.

Table 2.1. Package versions for Ubuntu

Package Version Note

g++ 4.6.3 Tested version

subversion 1.6.17 Tested version

gfortran 4.6.3 Tested version

ipython 0.12.1 Tested version

cmake 2.8.6 Minimum version

swig 2.0.4 Tested version

ant 1.8.2 Tested version

python-dev 2.7.3 Tested version

http://www.jmodelica.org/sdk
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Package Version Note

python-numpy 1.6.1 Tested version

python-scipy 0.9.0 Tested version

python-matplotlib 1.1.1 Tested version

cython 0.15 Minimum version

python-lxml 2.3.2 Tested version

python-nose 1.1.2 Tested version

python-jpype 0.5.4.2 Tested version

zlib1g-dev 1:1.2.3.4 Tested version

libboost-dev 1.48.0.2 Tested version

jcc 2.16 Minimum version

3.1.2. Compiling Ipopt

While Ipopt is available as a pre-compiled package for Ubuntu, it is recommended to build Ipopt from sources.
The Ipopt packages provided for Ubuntu have had flaws (including the version provided for Ubuntu 12.04) that
prevented usage with JModelica.org. Also, compiling Ipopt from sources is required when using the linear solvers
MA27 or MA57 from the HSL library, since these are not available as open source software.

First, download the Ipopt sources from https://projects.coin-or.org/Ipopt and unpack the content:

tar xvf Ipopt-3.10.2.tgz

Then, retrieve the third party dependencies:

cd Ipopt-3.10.2/ThirdParty/Blas
./get.Blas
cd ../Lapack
./get.Lapack
cd ../Mumps
./get.Mumps
cd ../Metis
./get.Metis
cd ../../

If you have access to the HSL codes MA57 or MA27, copy their sources into the directory ThirdParty/HSL. In
the next step, configure and compile Ipopt:

mkdir build
cd build
../configure --prefix=/home/<user_name>/<ipopt_installation_location>
make install

where <user_name> and <ipopt_installation_location> are replaced by the user directory and the installation
directory of choice for Ipopt.

3.1.3. Installing JModelica.org with WORHP (optional)

As an alternative to IPOPT for optimization, the CasADi framework in JModelica.org also has support for
the solver WORHP. Note that WORHP is closed source, but offers free personal academic licenses. To
compile JModelica.org with support for WORHP, first obtain the WORHP binaries and a license file from
http://www.worhp.de. Set the environment variables $WORHP to your directory containing the binaries and
$WORHP_LICENSE_FILE to your license file.

Normally, this would be sufficient, but for now the following additional measures are needed. Find the follow-
ing six lines in $JMODELICA_SRC/ThirdParty/CasADi/CasADi/interface/worhp/worhp_internal.cpp and
remove them:

addOption("CutLength",OT_REAL,worhp_p_.CutLength,"Scaling factor for Cut recovery strategy");

https://projects.coin-or.org/Ipopt
http://www.worhp.de
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addOption("Ma57PivotThresh",OT_REAL,worhp_p_.Ma57PivotThresh,"Pivoting tolerance for MA57 = CNTL(1)");
if (hasSetOption("CutLength")) worhp_p_.CutLength = getOption("CutLength");
if (hasSetOption("Ma57PivotThresh")) worhp_p_.Ma57PivotThresh = getOption("Ma57PivotThresh");
setOption("CutLength",worhp_p_.CutLength);
setOption("Ma57PivotThresh",worhp_p_.Ma57PivotThresh);

Find the line

option(WITH_WORHP "Compile the WORHP interface" OFF)

in $JMODELICA_SRC/ThirdParty/CasADi/CasADi/CMakeLists.txt and change OFF to ON.

3.2. Compiling

Make sure that all prerequisites are installed before compiling the JModelica.org platform. First, check out the
JModelica.org sources:

svn co https://svn.jmodelica.org/trunk JModelica.org

Then configure and build JModelica.org:

cd JModelica.org
mkdir build
cd build
../configure --prefix=/home/<user_name>/<jmodelica_install_location> \
             --with-ipopt=/home/<user_name>/<ipopt_install_location> 
make install
make casadi_interface

where <user_name> and <jmodelica_installation_location> are replaced by the user directory and the in-
stallation directory of choice for JModelica.org.

3.3. Testing JModelica.org

In order to verify that JModelica.org has been installed correctly, start an IPython shell using the command /home/
<user_name>/<jmodelica_install_location>/bin/jm_ipython and run a few examples:

# Import and run the VDP_sim example and plot results
from pyjmi.examples import VDP_sim
VDP_sim.run_demo()

# Import and run the CSTR example and plot results
from pyjmi.examples import cstr
cstr.run_demo()

# Import and run the CSTR example using CasADi and plot results
from pyjmi.examples import cstr_casadi
cstr_casadi.run_demo()
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Chapter 3. Getting started
This chapter is intended to give a brief introduction to using the JModelica.org Python packages and will therefore
not go into any details. Please refer to the other chapters of this manual for more information on each specific topic.

1. The JModelica.org Python packages
The JModelica.org Python interface enables users to use Python scripting to interact with Modelica and Optimica
models. The interface consists of three packages:

• PyModelica Interface to the compilers. Compile Modelica and Optimica code into model units, FMUs. See
Chapter 4, Working with Models for more information.

• PyFMI Work with models that have been compiled into FMUs (Functional Mock-up Units), perform simula-
tions, parameter manipulation, plot results etc. See Chapter 5, Simulation of FMUs for more information.

• PyJMI Work with models that are represented in symbolic form based no the automatic differentiation tool
CasADi. This package is mainly used for solving optimization problems. See Chapter 6, Optimization for more
information.

2. Starting a Python session
Starting a Python session differs somewhat depending on your operating system.

2.1. Windows

If you are on Windows, there are three different Python shells available under the JModelica.org start menu.

• Python Normal command shell started with Python.

• IPython Interactive shell for Python with, for example, code highlighting and tab completion.

• pylab IPython shell which also loads the numeric computation environment PyLab.

It is recommended to use either the IPython or pylab shell.

2.2. Linux

To start the IPython shell with pylab on Linux open a terminal and enter the command:

> $JMODELICA_HOME/bin/jm_ipython.sh -pylab

3. Running an example
The Python packages pyfmi and pyjmi each contain a folder called examples in which there are several Python
example scripts. The scripts demonstrate compilation, loading and simulation or optimization of models. The
corresponding model files are located in the subdirectory files. The following code demonstrates how to run
such an example. First a Python session must be started, see Section 2, “Starting a Python session” above. The
example scripts are preferably run in the pylab Python shell.

The following code will run the RLC example and plot some results.

# Import the RLC example
from pyjmi.examples import RLC

# Run the RLC example and plot results
RLC.run_demo()

http://www.scipy.org/PyLab
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Open RLC.py in a text editor and look at the Python code to see what happens when the script is run.

4. Checking your installation
The JModelica.org Python packages require some third-party Python packages in order to run. Use the function
<package>.check_packages(), where <package> is either pymodelica, pyfmi or pyjmi, to list which Python
packages that are found on your computer. Missing or having the wrong version of a package can be a source of er-
rors. Therefore it can be useful to run <package>.check_packages() after installation or when trouble-shooting.

import pyjmi
pyjmi.check_packages()

Performing pymodelica/pyjmi package check
=========================================

Platform...................... win32

Python version:............... 2.7.3

pymodelica/pyjmi version:..... 1.12

Dependencies:

Package                        Version
-------                        -------
assimulo...................... --
casadi........................ 1.7.0
Cython........................ 0.18
jpype......................... --
lxml.......................... 3.1.0
matplotlib.................... 1.2.0
nose.......................... 1.2.1
numpy......................... 1.6.2
scipy......................... 0.11.0
wxPython...................... 2.8.12.1
pyreadline.................... 1.7.1
setuptools.................... 0.6

5. Redefining the JModelica.org environment
When importing pyjmi or pymodelica in Python, the script startup.py is run which sets the environment used
by JModelica.org for the current Python session. For example, the environment variable JMODELICA_HOME points
at the JModelica.org installation directory and IPOPT_HOME points at the Ipopt installation directory. One or more
of these environment variables set in startup.py can be overridden by a user defined script: user_startup.py.

The script startup.py looks for user_startup.py in the folder

• $USERPROFILE/.jmodelica.org/ (Windows)

• $HOME/.jmodelica.org/ (unix)

If the script user_startup.py is not found, the default environment variables will be used.

5.1. Example redefining IPOPT_HOME

The following step-by-step procedure will show how to redefine the JModelica.org environment variable
IPOPT_HOME:

1. Go to the folder $USERPROFILE (Windows) or $HOME (Linux). To find out where $USERPROFILE or $HOME points
to, open a Python shell and type:

import os
os.environ['USERPROFILE']   // Windows
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os.environ['HOME']          // Linux

2. Create a folder and name it .jmodelica.org (or open it if it already exists)

3. In this folder, create a text file and name it user_startup.py.

4. Open the file and type

environ['IPOPT_HOME']='<new path to Ipopt home>'

5. Save and close.

6. Check your changes by opening a Python shell, import pyjmi and check the IPOPT_HOME environment variable:

import pyjmi
pyjmi.environ['IPOPT_HOME']

6. The JModelica.org user forum
Please use the JModelica.org forum for any questions related to JModelica.org or the Modelica language. You
can search in old threads to see if someone has asked your question before or start a new thread if you are a
registered user.

http://www.jmodelica.org/forum
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Chapter 4. Working with Models
1. Introduction to models
Modelica and Optimica models can be compiled and loaded as model objects using the JModelica.org Python
interface. These model objects can be used for both simulation and optimization purposes. This chapter will cover
how to compile Modelica and Optimica models, set compiler options, load the compiled model in a Python model
object and use the model object to perform model manipulations such as setting and getting parameters.

1.1. The different model objects in JModelica.org

There are several different kinds of model objects that can be created with JModelica.org: FMUModel(ME/CS)(1/2)
and OptimizationProblem. The FMUModel(ME/CS)(1/2) is created by loading an FMU (Functional Mock-up
Unit), which is a compressed file compliant with the FMI (Functional Mock-up Interface) standard. The Opti-
mizationProblem is created by transferring an optimization problem into the CasADi-based optimization tool
chain.

FMUs are created by compiling Modelica models with JModelica.org, or any other tool supporting FMU export.
JModelica.org supports both export and import of FMUs for Model Exchange (FMU-ME) and FMUs for Co-
Simulation (FMU-CS), version 1.0 and 2.0. Generated FMUs can be loaded in an FMUModel(ME/CS)1 object in
Python and then be used for simulation purposes. Optimica models can not be compiled into FMUs.

OptimizationProblem objects for CasADi optimization do not currently have a corresponding file format, but
are transferred directly from the JModelica.org compiler, based on Modelica and Optimica models. They contain a
symbolic representation of the optimization problem, which is used with the automatic differentiation tool CasADi
for optimization purposes. Read more about CasADi and how a OptimizationProblem object can be used for
optimization in Section 5, “Dynamic optimization of DAEs using direct collocation with CasADi” in Chapter 6,
Optimization.

2. Compilation
This section brings up how to compile a model to an FMU-ME / FMU-CS. Compiling a model to an FMU-ME /
FMU-CS will be demonstrated in Section 2.1, “Simple FMU-ME compilation example” and Section 2.2, “Simple
FMU-CS compilation example” respectively.

For more advanced usage of the compiler functions, there are compiler options and arguments which can be
modified. These will be explained in Section 2.4, “Compiler settings”.

Section 2.6, “Compilation in more detail”, will go through some parts of the compilation process and how to
perform these steps one by one.

2.1. Simple FMU-ME compilation example

The following steps compile a model to an FMU-ME version 1.0:

1. Import the JModelica.org compiler function compile_fmu from the package pymodelica.

2. Specify the model and model file.

3. Perform the compilation.

This is demonstrated in the following code example:

# Import the compiler function
from pymodelica import compile_fmu

# Specify Modelica model and model file (.mo or .mop)
model_name = 'myPackage.myModel'
mo_file = 'myModelFile.mo'

http://casadi.org
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# Compile the model and save the return argument, which is the file name of the FMU
my_fmu = compile_fmu(model_name, mo_file)

There is a compiler argument target that controls whether the model will be exported as an FMU-ME or FMU-
CS. The default is to compile an FMU-ME, so target does not need to be set in this example. The compiler
argument version specifies if the model should be exported as an FMU 1.0 or 2.0. As the default is to compile
an FMU 1.0, version does not need to be set either in this example. To compile an FMU 2.0, version should
be set to '2.0'.

Once compilation has completed successfully, an FMU-ME 1.0 will have been created on the file system. The
FMU is essentially a compressed file archive containing the files created during compilation that are needed when
instantiating a model object. Return argument for compile_fmu is the full file path of the FMU that has just been
created, this will be useful later when we want to create model objects. More about the FMU and loading models
can be found in Section 3, “Loading models”.

In the above example, the model is compiled using default arguments and compiler options - the only arguments
set are the model class and file name. However, compile_fmu has several other named arguments which can
be modified. The different arguments, their default values and interpretation will be explained in Section 2.4,
“Compiler settings”.

2.2. Simple FMU-CS compilation example

The following steps compiles a model to an FMU-CS version 1.0:

1. Import the JModelica.org compiler function compile_fmu from the package pymodelica.

2. Specify the model and model file.

3. Set the argument target = 'cs'

4. Perform the compilation.

This is demonstrated in the following code example:

# Import the compiler function
from pymodelica import compile_fmu

# Specify Modelica model and model file (.mo or .mop)
model_name = 'myPackage.myModel'
mo_file = 'myModelFile.mo'

# Compile the model and save the return argument, which is the file name of the FMU
my_fmu = compile_fmu(model_name, mo_file, target='cs')

In a Co-Simulation FMU, the integrator for solving the system is contained in the model. With an FMU-CS
exported with JModelica.org, two different solvers are supported: CVode and Explicit Euler.

2.3. Compiling from libraries

The model to be compiled might not be in a standalone .mo file, but rather part of a library consisting of a directory
structure containing several Modelica files. In this case, the file within the library that contains the model should
not be given on the command line. Instead, the entire library should to added to the list of libraries that the compiler
searches for classes in. This can be done in several ways (here library directory refers to the top directory of the
library, which should have the same name as the top package in the library):

• Adding the directory containing the library directory to the environment variable MODELICAPATH. The compiler
will search for classes in all libraries found in any on the directories in MODELICAPATH. In this case the file_name
argument of the compilation function can be omitted, assuming no additional Modelica files are needed.

• Setting the 'extra_lib_dirs' compiler option to the path to the directory containing the library directory. This
is equivalent to adding it to the MODELICAPATH, but only for that compilation.

• Giving the path to the library directory in the file_name argument of the compilation function. This allows
adding a specific library to the search list (as opposed to adding all libraries in a specific directory).
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By default, the script starting a JModelica.org Python shell sets the MODELICAPATH to the directory containing the
version of the Modelica Standard Library (MSL) that is included in the installation. Thus, all classes in the MSL
are available without any need to specify its location.

The Python code example below demonstrates these methods:

# Import the compiler function
from pymodelica import compile_fmu

# Compile an example model from the MSL
fmu1 = compile_fmu('Modelica.Mechanics.Rotational.Examples.First')

# Compile a model from the library MyLibrary, located in C:\MyLibs
fmu2 = compile_fmu('MyLibrary.MyModel', compiler_options = {'extra_lib_dirs':'C:/MyLibs'})

# The same as the last command, if no other libraries in C:\MyLibs are needed
fmu3 = compile_fmu('MyLibrary.MyModel', 'C:/MyLibs/MyLibrary')

2.4. Compiler settings

The compiler function arguments can be listed with the interactive help in Python. The arguments are explained
in the corresponding Python docstring which is visualized with the interactive help. This is demonstrated for
compile_fmu below. The docstring for any other Python function for can be displayed in the same way.

2.4.1. compile_fmu arguments

The compile_fmu arguments can be listed with the interactive help.

# Display the docstring for compile_fmu with the Python command 'help'
from pymodelica import compile_fmu
help(compile_fmu)
Help on function compile_fmu in module pymodelica.compiler:

compile_fmu(class_name, file_name=[], compiler='auto', target='me', version='1.0', 
            compiler_options={}, compile_to='.', compiler_log_level='warning', 
            separate_process=True, jvm_args='')
Compile a Modelica model to an FMU.

A model class name must be passed, all other arguments have default values.
The different scenarios are:

* Only class_name is passed:
    - Class is assumed to be in MODELICAPATH.

* class_name and file_name is passed:
    - file_name can be a single path as a string or a list of paths
      (strings). The paths can be file or library paths.
    - Default compiler setting is 'auto' which means that the appropriate
      compiler will be selected based on model file ending, i.e.
      ModelicaCompiler if a .mo file and OptimicaCompiler if a .mop file is
      found in file_name list.

Library directories can be added to MODELICAPATH by listing them in a
special compiler option 'extra_lib_dirs', for example:

    compiler_options =
        {'extra_lib_dirs':['c:\MyLibs1','c:\MyLibs2']}

Other options for the compiler should also be listed in the compiler_options
dict.

The compiler target is 'me' by default which means that the shared
file contains the FMI for Model Exchange API. Setting this parameter to
'cs' will generate an FMU containing the FMI for Co-Simulation API.

Parameters::

    class_name --
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        The name of the model class.

    file_name --
        A path (string) or paths (list of strings) to model files and/or
        libraries.
        Default: Empty list.

    compiler --
        The compiler used to compile the model. The different options are:
          - 'auto': the compiler is selected automatically depending on
             file ending
          - 'modelica': the ModelicaCompiler is used
          - 'optimica': the OptimicaCompiler is used
        Default: 'auto'

    target --
        Compiler target. Possible values are 'me', 'cs' or 'me+cs'.
        Default: 'me'

    version --
        The FMI version. Valid options are '1.0' and '2.0'.
        Default: '1.0'

    compiler_options --
        Options for the compiler.
        Default: Empty dict.

    compile_to --
        Specify target file or directory. If file, any intermediate directories 
        will be created if they don't exist. If directory, the path given must 
        exist.
        Default: Current directory.

    compiler_log_level --
        Set the logging for the compiler. Takes a comma separated list with
        log outputs. Log outputs start with a flag :'warning'/'w',
        'error'/'e', 'info'/'i' or 'debug'/'d'. The log can be written to file
        by appended flag with a colon and file name.
        Default: 'warning'

    separate_process --
        Run the compilation of the model in a separate process.
        Checks the environment variables (in this order):
            1. SEPARATE_PROCESS_JVM
            2. JAVA_HOME
        to locate the Java installation to use.
        For example (on Windows) this could be:
            SEPARATE_PROCESS_JVM = C:\Program Files\Java\jdk1.6.0_37
        Default: True

    jvm_args --
        String of arguments to be passed to the JVM when compiling in a
        separate process.
        Default: Empty string

Returns::

    A compilation result, represents the name of the FMU which has been
    created and a list of warnings that was raised.

2.4.2. Compiler options

Compiler options can be modified using the compile_fmu argument compiler_options. This is shown in the
example below.

# Compile with the compiler option 'enable_variable_scaling' set to True

# Import the compiler function
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from pymodelica import compile_fmu
 
# Specify model and model file
model_name = 'myPackage.myModel'
mo_file = 'myModelFile.mo'

# Compile
my_fmu = compile_fmu(model_name, mo_file, compiler_options={"enable_variable_scaling":True})

There are four types of options: string, real, integer and boolean. The complete list of options can be found
in Appendix A, Compiler options.

2.5. Compiling in a separate process

In JModelica.org, the compilers (ModelicaCompiler and OptimicaCompiler) are written in Java. When compil-
ing a model from the Python interface, with e.g. compile_fmu, the default behavior is to compile the model in
a separate process. This means that a specific JRE (Java Runtime Environment) is used for the compilation. For
those on a 64 bit Windows this is can be very useful as the default JRE used with JPype is 32 bit. Also, in most
cases, the JVM (Java Virtual Machine) can be given a larger heap space (especially when using a 64 bit JRE
instead of a 32 bit) which enables compilation of larger models.

The environment variable SEPARATE_PROCESS_JVM can be set to point at a specific Java installation (JRE or
JDK) for the compilation. For Windows users, the environment variable can be found (and set) in the file
setenv.bat which is located in the JModelica.org installation folder. It can also be set locally in the Python shell.
If SEPARATE_PROCESS_JVM is not set, JAVA_HOME will be used instead. It is also possible to pass arguments to the
JVM with the compile_fmu argument 'jvm_args'.

The following example demonstrates how to set the maximum heap space for the JVM to one gigabyte by setting
the argument jvm_args:

# Import the compiler function
from pymodelica import compile_fmu

# Compile in separate process
compile_fmu('myPackage.myModel', 'myModelFile.mo', jvm_args='-Xmx1g')

Another option is to access the compilers through the Python package JPype (this used to be the default behavior).
This option is still available and can be ebabled by setting the argument separate_process to False when calling
e.g. compile_fmu.

2.6. Compilation in more detail

Compiling with compile_fmu bundles quite a few steps required for the compilation from model file to FMU.
Some of these steps will be briefly described in this section with code examples. For a more detailed review of
the compile procedure, see Section 4, “Architecture” in Chapter 1, Introduction.

2.6.1. Creating a compiler

A compiler (which can be either a Modelica or Optimica compiler) is created by importing the Python classes
from the compiler module. This example code will create a Modelica compiler and a target object.

# Import the class ModelicaCompiler from the compiler module
from pymodelica.compiler_wrappers import ModelicaCompiler

# Create a compiler and compiler target object for FMU-ME version 1.0
mc = ModelicaCompiler()
target = mc.create_target_object("me", "1.0")

2.6.2. Source tree generation and flattening

In the first step of the compilation, the model is parsed and instantiated. Then the model is transformed into a flat
representation which can be used to generate C and XML code. If there are errors in the model, for example syntax
or type errors, Python exceptions will be thrown during these steps.

Note that the default setting for the compiler is to compile an FMU.



Working with Models

17

# Parse the model and get a reference to the root of the source AST
source_root = mc.parse_model('myPackage.mo')

# Generate an instance tree representation and get a reference to the model instance
model_instance = mc.instantiate_model(source_root, 'myPackage.myModel', target)

# Perform flattening and get a flat representation
flat_rep = mc.flatten_model(model_instance, target)

2.6.3. Code generation

The next step is code generation, which produces C code containing the model equations, and XML files containing
model meta data such as variable names and types.

# Generate code
mc.generate_code(flat_rep, target)

3. Loading models
Compiled models, FMUs, are loaded in the JModelica.org Python interface with the FMUModel(ME/CS) class from
the pyfmi module, while optimization problems for the CasADi-based optimization are transferred directly into
the OptimizationProblem class from the pyjmi module . This will be demonstrated in Section 3.2, “Loading an
FMU”, ??? and Section 3.3, “Transferring an OptimizationProblem”.

The model classes contain many methods with which models can be manipulated after instantiation. Amongst the
most important methods are initialize and simulate, which are used when simulating. These are explained in
Chapter 5, Simulation of FMUs and Chapter 6, Optimization. For more information on how to use the Optimiza-
tionProblem for optimization purposes, see Chapter 6, Optimization. The more basic methods for variable and
parameter manipulation are explained in Section 4, “Changing model parameters”.

3.1. The FMU

The FMU (Functional Mock-up Unit) is a compressed file which follows the FMI (Functional Mock-up Interface)
standard. An FMU is created when compiling a Modelica model with pymodelica.compile_fmu.

There are two types of FMUs, Model Exchange and Co-Simulation. In a Co-Simulation FMU, the integrator for
solving the system is contained in the model while in an Model Exchange FMU, an external integrator is needed
to solve the system. JModelica.org supports export and import of FMU-ME and FMU-CS version 1.0 and 2.0.
The solvers supported for FMU-CS export are CVode and Explicit Euler.

3.2. Loading an FMU

An FMU file can be loaded in JModelica.org with the method load_fmu in the pyfmi module. The following short
example demonstrates how to do this in a Python shell or script.

# Import load_fmu from pyfmi
from pyfmi import load_fmu
myModel = load_fmu('myFMU.fmu')

load_fmu returns a class instance of the appropriate FMU type which then can be used to set parameters and used
for simulations.

3.3. Transferring an OptimizationProblem

An optimization problem can be transferred directly from the compiler in JModelica.org into the class Optimiza-
tionProblem in the pyjmi module. The transfer is similar to the combined steps of compiling and then loading
an FMU. The following short example demonstrates how to do this in a Python shell or script.

# Import transfer_optimization_problem
from pyjmi import transfer_optimization_problem

# Specify Modelica model and model file
model_name = 'myPackage.myModel'
mo_file = 'myModelFile.mo'
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# Compile the model, return argument is an OptimizationProblem
myModel = transfer_optimization_problem(model_name, mo_file)

4. Changing model parameters
Model parameters can be altered with methods in the model classes once the model has been loaded. Some short
examples in Section 4.1, “Setting and getting parameters” will demonstrate this.

4.1. Setting and getting parameters
The model parameters can be accessed with via the model class interfaces. It is possible to set and get one specific
parameter at a time or a whole list of parameters.

The following code example demonstrates how to get and set a specific parameter using an example FMU model
from the pyjmi.examples package.

# Compile and load the model
from pymodelica import compile_fmu
from pyfmi import load_fmu
my_fmu = compile_fmu('RLC_Circuit','RLC_Circuit.mo')
rlc_circuit = load_fmu(my_fmu)

# Get the value of the parameter 'resistor.R' and save the result in a variable 'resistor_r'
resistor_r = rlc_circuit.get('resistor.R')

# Give 'resistor.R' a new value
resistor_r = 2.0
rlc_circuit.set('resistor.R', resistor_r)

The following example demonstrates how to get and set a list of parameters using the same example model as
above. The model is assumed to already be compiled and loaded.

# Create a list of parameters, get and save the corresponding values in a variable 'values'
vars = ['resistor.R', 'resistor.v', 'capacitor.C', 'capacitor.v']
values = rlc_circuit.get(vars)

# Change some of the values
values[0] = 3.0
values[3] = 1.0
rlc_circuit.set(vars, values)

5. Debugging models
The JModelica.org compilers can generate debugging information in order to facilitate localization of errors. There
are three mechanisms for generating such diagnostics: dumping of debug information to the system output, gen-
eration of HTML code that can be viewed with a standard web browser or logs in XML format from the non-
linear solver.

5.1. Compiler logging
The amount of logging that should be output by the compiler can be set with the argument compiler_log_level to
the compile-functions (compile_fmu and also transfer_optimization_problem). The available log levels are
'warning' (default), 'error', 'info','verbose' and 'debug' which can also be written as 'w', 'e', 'i','v'
and 'd' respectively. The following example demonstrates setting the log level to 'info':

# Set compiler log level to 'info'
compile_fmu('myModel', 'myModels.mo', compiler_log_level='info')

The log is printed to the standard output, normally the terminal window from which the compiler is invoked.

The log can also be written to file by appending the log level flag with a colon and file name. This is shown in
the following example:

# Set compiler log level to info and write the log to a file log.txt
compile_fmu('myModel', 'myModels.mo', compiler_log_level='i:log.txt')
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It is possible to specify several log outputs by specifying a comma separated list. The following example writes
log warnings and errors (log level 'warning' or 'w') to the standard output and a more verbose logging to file
(log level 'info' or 'i'):

# Write warnings and errors to standard output and the log with log level info to log.txt
compile_fmu('myModel', 'myModels.mo', compiler_log_level= 'w,i:log.txt')

5.2. Runtime logging

5.2.1. Setting log level

Many events that occur inside of an FMU can generate log messages. The log messages from the runtime are
saved in a file with the default name <FMU name>_log.txt. A log file name can also be supplied when loading
an FMU, this is shown in the example below:

# Load model
model = load_fmu(fmu_name, log_file_name='MyLog.txt')

How much information that is output to the log file can be controlled by setting the log_level argument
to load_fmu. log_level can be any number between 0 and 7, where 0 means no logging and 7 means the
most verbose logging. The log level can also be changed after the FMU has been loaded with the function
set_log_level(level). Setting the log_level is demonstrated in the following example:

# Load model and set log level to 5
model = load_fmu(fmu_name, log_level=5)

# Change log level to 7
model.set_log_level(7)

If the loaded FMU is an FMU exported by JModelica.org, the amount of logging produced by the FMU can also
be altered. This is done by setting the parameter _log_level in the FMU. This log level ranges from 0 to 7 where
0 represents the least verbose logging and 7 the most verbose. The following example demonstrates this:

# Load model (with default log level)
model = load_fmu(fmu_name)

# Set amount of logging produced to the most verbose
model.set('_log_level', 6)

# Change log level to 7 to be able to see everything that is being produced
model.set_log_level(7)

5.2.2. Interpreting logs from FMUs produced by JModelica.org

In JModelica.org, information is logged in XML format, which ends up mixed with FMI Library output in the re-
sulting log file. Example: (the following examples are based on the example pyjmi.examples.logger_example.)

...
FMIL: module = FMICAPI, log level = 5: Calling fmiInitialize
FMIL: module = Model, log level = 4: [INFO][FMU status:OK] <EquationSolve>Model equations evaluation invoked at<value name="t">        0.0000000000000000E+00</value>
FMIL: module = Model, log level = 4: [INFO][FMU status:OK]   <BlockEventIterations>Starting block (local) event iteration at<value name="t">        0.0000000000000000E+00</value>in<value name="block">0</value>
FMIL: module = Model, log level = 4: [INFO][FMU status:OK]     <vector name="ivs">        0.0000000000000000E+00,         0.0000000000000000E+00,         0.0000000000000000E+00</vector>
FMIL: module = Model, log level = 4: [INFO][FMU status:OK]     <vector name="switches">        0.0000000000000000E+00,         0.0000000000000000E+00,         0.0000000000000000E+00,         0.0000000000000000E+00</vector>
FMIL: module = Model, log level = 4: [INFO][FMU status:OK]     <vector name="booleans"></vector>
FMIL: module = Model, log level = 4: [INFO][FMU status:OK]     <BlockIteration>Local iteration<value name="iter">1</value>at<value name="t">        0.0000000000000000E+00</value>
FMIL: module = Model, log level = 4: [INFO][FMU status:OK]       <JacobianUpdated><value name="block">0</value>
FMIL: module = Model, log level = 4: [INFO][FMU status:OK]         <matrix name="jacobian">
FMIL: module = Model, log level = 4: [INFO][FMU status:OK]                  -1.0000000000000000E+00,         4.0000000000000000E+00,         0.0000000000000000E+00;
FMIL: module = Model, log level = 4: [INFO][FMU status:OK]                  -1.0000000000000000E+00,        -1.0000000000000000E+00,        -1.0000000000000000E+00;
FMIL: module = Model, log level = 4: [INFO][FMU status:OK]                  -1.0000000000000000E+00,         1.0000000000000000E+00,        -1.0000000000000000E+00;
FMIL: module = Model, log level = 4: [INFO][FMU status:OK]         </matrix>
FMIL: module = Model, log level = 4: [INFO][FMU status:OK]       </JacobianUpdated>
...

The log can be inspected manually, using general purpose XML tools, or parsed using the tools in pyjmi.log. A
pure XML file that can be read by XML tools can be extracted with

# Extract the log file XML contents into a pure XML file
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pyjmi.log.extract_jmi_log(dest_xml_file_name, log_file_name)

The XML contents in the log file can also be parsed directly:

# Parse the entire XML log
log = pyjmi.log.parse_jmi_log(log_file_name)

log will correspond to the top level log node, containing all other nodes. Log nodes have two kinds of children:
named (with a name attribute in the XML file) and unnamed (without).

• Named children are accessed by indexing with a string: node['t'], or simply dot notation: node.t.

• Unnamed children are accessed as a list node.nodes, or by iterating over the node.

There is also a convenience function gather_solves to extract common information about equation solves in the
log. This function collects nodes of certain types from the log and annotates some of them with additional named
children. The following example is from pyjmi.examples.logger_example:

# Parse the entire XML log
log = pyjmi.log.parse_jmi_log(log_file_name)
# Gather information pertaining to equation solves
solves = pyjmi.log.gather_solves(log)

print
print 'Number of solver invocations:',                      len(solves)
print 'Time of first solve:',                               solves[0].t
print 'Number of block solves in first solver invocation:', len(solves[0].block_solves)
print 'Names of iteration variables in first block solve:', solves[0].block_solves[0].variables
print 'Min bounds in first block solve:',                   solves[0].block_solves[0].min
print 'Max bounds in first block solve:',                   solves[0].block_solves[0].max
print 'Initial residual scaling in first block solve:',     solves[0].block_solves[0].initial_residual_scaling
print 'Number of iterations in first block solve:',         len(solves[0].block_solves[0].iterations)
print
print 'First iteration in first block solve: '
print '  Iteration variables:',              solves[0].block_solves[0].iterations[0].ivs
print '  Scaled residuals:',                 solves[0].block_solves[0].iterations[0].residuals
print '  Jacobian:\n',                       solves[0].block_solves[0].iterations[0].jacobian
print '  Jacobian updated in iteration:',    solves[0].block_solves[0].iterations[0].jacobian_updated
print '  Residual scaling factors:',         solves[0].block_solves[0].iterations[0].residual_scaling
print '  Residual scaling factors_updated:', solves[0].block_solves[0].iterations[0].residual_scaling_updated
print '  Scaled residual norm:',             solves[0].block_solves[0].iterations[0].scaled_residual_norm

5.3. Getting HTML diagnostics

By setting the compiler option generate_html_diagnostics to true, a number of HTML pages contain-
ing diagnostics are generated. The HTML files are generated in the directory Model_Name_diagnostics,
where Model_Name is the name of the compiled model. As compared to the diagnostics generated by the
compiler_log_level argument, the HTML diagnostics contains only the most important information, but it also
provides a better overview. Opening the file Model_Name_diagnostics/index.html in a web browser, results
in a page similar to the one shown below.

Modelica.Mechanics.Rotational.Examples.First

Problems:
0 errors, 0 compliance errors, 1 warnings

Model before transformation

Number of independent constants:              1
  Number of Real independent constants:       1
  Number of Integer independent constants:    0
  Number of Enum independent constants:       0
  Number of Boolean independent constants:    0
  Number of String independent constants:     0
Number of dependent constants:                0
  Number of Real dependent constants:         0
  Number of Integer dependent constants:      0
  Number of Enum dependent constants:         0
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  Number of Boolean dependent constants:      0
  Number of String dependent constants:       0
Number of independent parameters:             20
  Number of Real independent parameters:      14
  Number of Integer independent parameters:   0
  Number of Enum independent parameters:      4
  Number of Boolean independent parameters:   2
  Number of String independent parameters:    0
Number of dependent parameters:               6
  Number of Real dependent parameters:        6
  Number of Integer dependent parameters:     0
  Number of Enum dependent parameters:        0
  Number of Boolean dependent parameters:     0
  Number of String dependent parameters:      0
Number of variables :                         53
  Number of Real variables:                   53
  Number of Integer variables:                0
  Number of Enum variables:                   0
  Number of Boolean variables:                0
  Number of String variables:                 0
Number of Real differentiated variables:      8
Number of Real derivative variables:          0
Number of Real algebraic variables:           45
Number of inputs:                             0
  Number of Real inputs:                      0
  Number of Integer inputs:                   0
  Number of Enum inputs:                      0
  Number of Boolean inputs:                   0
  Number of String inputs:                    0
Number of discrete variables :                0
  Number of Real discrete variables:          0
  Number of Integer discrete variables:       0
  Number of Enum discrete variables:          0
  Number of Boolean discrete variables:       0
  Number of String discrete variables:        0
Number of equations:                          51
Number of variables with binding expression:  4
  Number of Real variables with binding exp:  4
  Number of Integer variables binding exp:    0
  Number of Enum variables binding exp:       0
  Number of Boolean variables binding exp:    0
  Number of String variables binding exp:     0
Total number of equations:                    55
Number of initial equations:                  0
Number of relational exps in equations:       1
Number of relational exps in init equations:  0
Flattened model

Connection sets

Model after transformation

Number of independent constants:              1
  Number of Real independent constants:       1
  Number of Integer independent constants:    0
  Number of Enum independent constants:       0
  Number of Boolean independent constants:    0
  Number of String independent constants:     0
Number of dependent constants:                0
  Number of Real dependent constants:         0
  Number of Integer dependent constants:      0
  Number of Enum dependent constants:         0
  Number of Boolean dependent constants:      0
  Number of String dependent constants:       0
Number of independent parameters:             34
  Number of Real independent parameters:      19
  Number of Integer independent parameters:   2
  Number of Enum independent parameters:      4
  Number of Boolean independent parameters:   9
  Number of String independent parameters:    0
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Number of dependent parameters:               6
  Number of Real dependent parameters:        6
  Number of Integer dependent parameters:     0
  Number of Enum dependent parameters:        0
  Number of Boolean dependent parameters:     0
  Number of String dependent parameters:      0
Number of variables :                         28
  Number of Real variables:                   28
  Number of Integer variables:                0
  Number of Enum variables:                   0
  Number of Boolean variables:                0
  Number of String variables:                 0
Number of Real differentiated variables:      4
Number of Real derivative variables:          4
Number of Real algebraic variables:           20
Number of inputs:                             0
  Number of Real inputs:                      0
  Number of Integer inputs:                   0
  Number of Enum inputs:                      0
  Number of Boolean inputs:                   0
  Number of String inputs:                    0
Number of discrete variables :                0
  Number of Real discrete variables:          0
  Number of Integer discrete variables:       0
  Number of Enum discrete variables:          0
  Number of Boolean discrete variables:       0
  Number of String discrete variables:        0
Number of equations:                          24
Number of variables with binding expression:  0
  Number of Real variables with binding exp:  0
  Number of Integer variables binding exp:    0
  Number of Enum variables binding exp:       0
  Number of Boolean variables binding exp:    0
  Number of String variables binding exp:     0
Total number of equations:                    24
Number of initial equations:                  4
Number of relational exps in equations:       1
Number of relational exps in init equations:  0
Transformed model

Alias sets (13 sets, 40 eliminated variables)

BLT diagnostics
BLT diagnostics table

Number of unsolved equation blocks in DAE initialization system: 1: {4}
Number of unsolved equation blocks in DAE system: 1: {4}

Number of unsolved equation blocks in DAE initialization system after tearing: 1: {1}
Number of unsolved equation blocks in DAE system after tearing: 1: {1}

Note that some of the entries, including Problems, Flattened model, Connection sets, Transformed model,
Alias sets, BLT diagnostics table and BLT diagnostics are links to sub pages containing additional
information. For example, the BLT diagnostics page contains information about individual systems of equations:

...

--- Block 7 ---
Solved block of 1 variables:
Computed variable:
  inertia2.flange_b.tau
Solution:
   - (  - ( damper.flange_b.tau ) ) - (  - ( spring.flange_b.tau ) ) + 0

--- Block 8 (Unsolvable block 0) ---
Non-solved linear block of 4 variables:
Coefficient variability: Parameter
Unknown variables:
  inertia2.a
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  idealGear.flange_b.tau
  idealGear.flange_a.tau
  inertia1.a
Equations:
  inertia1.a = ( idealGear.ratio ) * ( inertia2.a )
  ( inertia2.J ) * ( inertia2.a ) =  - ( idealGear.flange_b.tau ) + inertia2.flange_b.tau
  0 = ( idealGear.ratio ) * ( idealGear.flange_a.tau ) + idealGear.flange_b.tau
  ( inertia1.J ) * ( inertia1.a ) =  - ( torque.flange.tau ) - ( idealGear.flange_a.tau )

...

Additionally there is a table view of the BLT. It can be found on the BLT diagnostics table page. It provides a
graphical representation of the BLT. The view is limited to 300 equations due to the complexity of the graph.



24

Chapter 5. Simulation of FMUs
1. Introduction
JModelica.org supports simulation of models described in the Modelica language and models following the FMI
standard, see Section 3, “Technology” in Chapter 1, Introduction. The simulation environment uses Assimulo as
standard which is a standalone Python package for solving ordinary differential and differential algebraic equa-
tions. Loading and simulation of FMUs has additionally been made available as a separate Python package, PyFMI.

This chapter describes how to load and simulate FMUs using explanatory examples.

2. A first example
This example focuses on how to use JModelica.org's simulation functionality in the most basic way. The model
which is to be simulated is the Van der Pol problem described in the code below. The model is also available from
the examples in JModelica.org in the file VDP.mop.

model VDP
    // State start values
    parameter Real x1_0 = 0;
    parameter Real x2_0 = 1;

    // The states
    Real x1(start = x1_0);
    Real x2(start = x2_0);

    // The control signal
    input Real u;

  equation
    der(x1) = (1 - x2^2) * x1 - x2 + u;
    der(x2) = x1;
end VDP;

Create a new file in your working directory called VDP.mo and save the model.

Next, create a Python script file and write (or copy paste) the commands for compiling and loading a model:

# Import the function for compilation of models and the load_fmu method
from pymodelica import compile_fmu
from pyfmi import load_fmu

# Import the plotting library
import matplotlib.pyplot as plt

Next, we compile and load the model:

# Compile model
fmu_name = compile_fmu("VDP","VDP.mo")

# Load model
vdp = load_fmu(fmu_name)

The function compile_fmu compiles the model into a binary, which is then loaded when the vdp object is created.
This object represents the compiled model, an FMU, and is used to invoke the simulation algorithm (for more
information about model creations and options, see Chapter 4, Working with Models):

res = vdp.simulate(final_time=10)

In this case we use the default simulation algorithm together with default options, except for the final time which
we set to 10. The result object can now be used to access in a dictionary-like way the simulation result:

x1 = res['x1']
x2 = res['x2']

http://www.jmodelica.org/assimulo
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t  = res['time']

The variable trajectories are returned as NumPy arrays and can be used for further analysis of the simulation result
or for visualization:

plt.figure(1)
plt.plot(t, x1, t, x2)
plt.legend(('x1','x2'))
plt.title('Van der Pol oscillator.')
plt.ylabel('Angle (rad)')
plt.xlabel('Time (s)')
plt.show()

In Figure 5.1, “Simulation result of the Van der Pol oscillator.” the simulation result is shown.

Figure 5.1. Simulation result of the Van der Pol oscillator.

3. Simulation of Models
Simulation of models in JModelica.org is performed via the simulate method of a model object. The FMU model
objects in JModelica.org are located in PyFMI:

• FMUModelME1 / FMUModelME2

• FMUModelCS1 / FMUModelCS2

FMUModelME* / FMUModelCS* also supports compiled models from other simulation/modelling tools that follow
the FMI standard (extension .fmu) (either Model exchange FMUs or Co-Simulation FMUs). The support is both
for FMI version 1.0 and FMI version 2.0. For more information about compiling a model in JModelica.org see
Chapter 4, Working with Models.

The simulation method is the preferred method for simulation of models and which by default is connected to the
Assimulo simulation package but can also be connected to other simulation platforms. The simulation method for
FMUModelME* / FMUModelCS* is defined as:
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class FMUModel(ME/CS)(...)
    ...
    def simulate(self,
             start_time=0.0,
             final_time=1.0,
             input=(),
             algorithm='AssimuloFMIAlg', 
             options={}):

And used in the following way:

res = FMUModel(ME/CS)*.simulate() # Using default values

For FMUModelCS*, the FMU contains the solver and is thus used (although using the same interface).

3.1. Convenience method, load_fmu

Since there are different FMI specifications for Model exchange and Co-Simulation and also differences between
versions, a convenience method, load_fmu has been created. This method is the preferred access point for loading
an FMU and will return an instance of the appropriate underlying FMUModel(CS/ME)* class.

model = load_fmu("myFMU.fmu")

3.2. Arguments

The start and final time attributes are simply the time where the solver should start the integration and stop the
integration. The input however is a bit more complex and is described in more detail in the following section. The
algorithm attribute is where the different simulation package can be specified, however currently only a connection
to Assimulo is supported and connected through the algorithm AssimuloFMIAlg for FMUModelME*.

3.2.1. Input

The input defines the input trajectories to the model and should be a 2-tuple consisting of the name(s) of the input
variables and the second argument should be either a data matrix or a function. If the argument is a data matrix it
should contain a time vector as the first column and the second column should correspond to the first name in the
first argument and so forth. If instead the second argument is a function it should be defined to take the time as
input and return the number of inputs in the order defined by the first argument.

For example, consider that we have a model with an input variable u1 and that the model should be driven by a
sinus wave as input. Also we are interested in the interval 0 to 10.

import numpy as N
t = N.linspace(0.,10.,100)            # Create one hundred evenly spaced points
u = N.sin(t)                          # Create the input vector
u_traj = N.transpose(N.vstack((t,u))) # Create the data matrix and transpose 
                                      # it to the correct form

The above code have created the data matrix that we are interested in giving to the model as input, we just need
to connect the data to a specific input variable, u1:

input_object = ('u1', u_traj)

Now we are ready to simulate using the input and simulate 10 seconds.

res = model.simulate(final_time=10, input=input_object)

If we on the other hand would have two input variables, u1 and u2 the script would instead look like:

import numpy as N
t = N.linspace(0.,10.,100)                     # Create one hundred evenly spaced points
u1 = N.sin(t)                                  # Create the first input vector
u2 = N.cos(t)                                  # Create the second input vector
u_traj = N.transpose(N.vstack((t,u1,u2)))      # Create the data matrix and 
                                               # transpose it to the correct form
input_object = (['u1','u2'], u_traj)
res = model.simulate(final_time=10, input=input_object)
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Note that the variables are now a List of variables.

If we were to do the same example using input functions instead, the code would look like for the single input case:

input_object = ('u1', N.sin)

and for the double input case:

def input_function(t):
    return N.array([N.sin(t),N.cos(t)])

input_object = (['u1','u2'],input_function)

3.2.2. Options for FMUModelME1 and FMUModelME2

The options attribute are where options to the specified algorithm are stored and are preferably used together with:

opts = FMUModelME*.simulate_options()

which returns the default options for the default algorithm. Information about the available options can be viewed
by typing help on the opts variable:

>>> help(opts)
   Options for the solving the FMU using the Assimulo simulation package.
   Currently, the only solver in the Assimulo package that fully supports
   simulation of FMUs is the solver CVode.
   
   ...

In Table 5.1, “General options for AssimuloFMIAlg.” the general options for the AssimuloFMIAlg algorithm
are described while in Table 5.2, “Selection of solver arguments for CVode” a selection of the different solver
arguments for the ODE solver CVode is shown. More information regarding the solver options can be found here,
http://www.jmodelica.org/assimulo.

Table 5.1. General options for AssimuloFMIAlg.

Option Default Description

solver 'CVode' Specifies the simulation method that
is to be used. Currently support-
ed solvers are, CVode, Radau5ODE,
RungeKutta34, Dopri5, RodasODE,
LSODAR, ExplicitEuler. Although
the recommended solver is "CVode".

ncp 0 Number of communication points. If
ncp is zero, the solver will return the
internal steps taken.

initialize True If set to True, the initializing al-
gorithm defined in the FMU mod-
el is invoked, otherwise it is as-
sumed the user have manually in-
voked model.initialize()

write_scaled_result False Set this parameter to True to write the
result to file without taking scaling in-
to account. If the value of scaled is
False, then the variable scaling fac-
tors of the model are used to repro-
duced the unscaled variable values.

result_file_name Empty string (default generated file
name will be used)

Specifies the name of the file where
the simulation result is written. Set-
ting this option to an empty string
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Option Default Description

results in a default file name that is
based on the name of the model class.

filter None A filter for choosing which variables
to actually store result for. The syn-
tax can be found here. An example
is filter = "*der" , store all variables
ending with 'der' and filter = ["*der*",
"summary*"], store all variables with
"der" in the name and all variables
starting with "summary".

result_handling "file" Specifies how the result should be
handled. Either stored to file or stored
in memory. One can also use a
custom handler. Available options:
"file", "memory", "custom"

Lets look at an example, consider that you want to simulate a FMU model using the solver CVode together with
changing the discretization method (discr) from BDF to Adams:

...
opts = model.simulate_options()          # Retrieve the default options
#opts['solver'] = 'CVode'                # Not necessary, default solver is CVode
opts['CVode_options']['discr'] = 'Adams' # Change from using BDF to Adams
opts['initialize'] = False               # Don't initialize the model
model.simulate(options=opts)             # Pass in the options to simulate and simulate

It should also be noted from the above example the options regarding a specific solver, say the tolerances for CVode,
should be stored in a double dictionary where the first is named after the solver concatenated with _options:

opts['CVode_options']['atol'] = 1.0e-6   # Options specific for CVode

For the general options, as changing the solver, they are accessed as a single dictionary:

opts['solver'] = 'CVode'  # Changing the solver
opts['ncp'] = 1000        # Changing the number of communication points.

Table 5.2. Selection of solver arguments for CVode

Option Default Description

discr 'BDF' The discretization method. Can be ei-
ther 'BDF' or 'Adams'

iter 'Newton' The iteration method. Can be either
'Newton' or 'FixedPoint'.

maxord 5 The maximum order used. Maximum
for 'BDF' is 5 while for the 'Adams'
method the maximum is 12

maxh Inf Maximum step-size. Positive float.

atol rtol*0.01*(nominal values of the
continuous states)

Absolute Tolerance. Can be an ar-
ray of floats where each value corre-
sponds to the absolute tolerance for
the corresponding variable. Can also
be a single positive float.

rtol 1.0e-4 The relative tolerance. The relative
tolerance are retrieved from the 'de-
fault experiment' section in the XML-
file and if not found are set to 1.0e-4

https://en.wikipedia.org/wiki/Glob_%28programming%29
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3.2.3. Options for FMUModelCS1 and FMUModelCS2

The options attribute are where options to the specified algorithm are stored and are preferably used together with:

opts = FMUModelCS*.simulate_options()

which returns the default options for the default algorithm. Information about the available options can be viewed
by typing help on the opts variable:

>>> help(opts)
   Options for the solving the CS FMU.
   
   ...

In Table 5.3, “General options for FMICSAlg.” the general options for the FMICSAlg algorithm are described.

Table 5.3. General options for FMICSAlg.

Option Default Description

ncp 500 Number of communication points.

initialize True If set to True, the initializing al-
gorithm defined in the FMU mod-
el is invoked, otherwise it is as-
sumed the user have manually in-
voked model.initialize()

write_scaled_result False Set this parameter to True to write the
result to file without taking scaling in-
to account. If the value of scaled is
False, then the variable scaling fac-
tors of the model are used to repro-
duced the unscaled variable values.

result_file_name Empty string (default generated file
name will be used)

Specifies the name of the file where
the simulation result is written. Set-
ting this option to an empty string
results in a default file name that is
based on the name of the model class.

filter None A filter for choosing which vari-
ables to actually store result
for. The syntax can be found
in http://en.wikipedia.org/wiki/Glob_
%28programming%29 . An example
is filter = "*der" , store all variables
ending with 'der' and filter = ["*der*",
"summary*"], store all variables with
"der" in the name and all variables
starting with "summary".

result_handling "file" Specifies how the result should be
handled. Either stored to file or stored
in memory. One can also use a
custom handler. Available options:
"file", "memory", "custom"

3.3. Return argument

The return argument from the simulate method is an object derived from a common result object ResultBase in
algorithm_drivers.py with a few extra convenience methods for retrieving the result of a variable. The result
object can be accessed in the same way as a dictionary type in Python with the name of the variable as key.

???
???
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res = model.simulate()
y = res['y']           # Return the result for the variable/parameter/constant y
dery = res['der(y)']   # Return the result for the variable/parameter/constant der(y)

This can be done for all the variables, parameters and constants defined in the model and is the preferred way of
retrieving the result. There are however some more options available in the result object, see Table 5.4, “Result
Object”.

Table 5.4. Result Object

Option Type Description

options Property Gets the options object that was used
during the simulation.

solver Property Gets the solver that was used during
the integration.

result_file Property Gets the name of the generated result
file.

is_variable(name) Method Returns True if the given name is a
time-varying variable.

data_matrix Property Gets the raw data matrix.

is_negated(name) Method Returns True if the given name is
negated in the result matrix.

get_column(name) Method Returns the column number in the da-
ta matrix which corresponds to the
given variable.

4. Examples
In the next sections, it will be shown how to use the JModelica.org platform for simulation of various FMUs.

The Python commands in these examples may be copied and pasted directly into a Python shell, in some cases
with minor modifications. Alternatively, they may be copied into a text file, which also is the recommended way.

4.1. Simulation of a high-index model

Mechanical component-based models often result in high-index DAEs. In order to efficiently integrate such
models, Modelica tools typically employs an index reduction scheme, where some equations are differen-
tiated, and dummy derivatives are selected. In order to demonstrate this feature, we consider the mod-
el Modelica.Mechanics.Rotational.Examples.First from the Modelica Standard library, see Figure 5.2,
“Modelica.Mechanics.Rotational.First connection diagram”. The model is of high index since there are two rotat-
ing inertias connected with a rigid gear.

Figure 5.2. Modelica.Mechanics.Rotational.First connection diagram

First create a Python script file and enter the usual imports:

import matplotlib.pyplot as plt
from pymodelica import compile_fmu
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from pyfmi import load_fmu

Next, the model is compiled and loaded:

# Compile model
fmu_name = compile_fmu("Modelica.Mechanics.Rotational.Examples.First",())

# Load model
model = load_fmu(fmu_name)

Notice that no file name, just an empty tuple, is provided to the function compile_fmu, since in this case the model
that is compiled resides in the Modelica standard library. In the compilation process, the index reduction algorithm
is invoked. Next, the model is simulated for 3 seconds:

# Load result file
res = model.simulate(final_time=3.)

Finally, the simulation results are retrieved and plotted:

w1 = res['inertia1.w']
w2 = res['inertia2.w']
w3 = res['inertia3.w']
tau = res['torque.tau']
t = res['time']

plt.figure(1)
plt.subplot(2,1,1)
plt.plot(t,w1,t,w2,t,w3)
plt.grid(True)
plt.legend(['inertia1.w','inertia2.w','inertia3.w'])
plt.subplot(2,1,2)
plt.plot(t,tau)
plt.grid(True)
plt.legend(['tau'])
plt.xlabel('time [s]')
plt.show()

You should now see a plot as shown below.

Figure 5.3. Simulation result for Modelica.Mechanics.Rotational.Examples.First

4.2. Simulation and parameter sweeps

This example demonstrates how to run multiple simulations with different parameter values. Sweeping parameters
is a useful technique for analysing model sensitivity with respect to uncertainty in physical parameters or initial
conditions. Consider the following model of the Van der Pol oscillator:
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  model VDP
    // State start values
    parameter Real x1_0 = 0;
    parameter Real x2_0 = 1;

    // The states
    Real x1(start = x1_0);
    Real x2(start = x2_0);

    // The control signal
    input Real u;

  equation
    der(x1) = (1 - x2^2) * x1 - x2 + u;
    der(x2) = x1;
  end VDP;

Notice that the initial values of the states are parametrized by the parameters x1_0 and x2_0. Next, copy the
Modelica code above into a file VDP.mo and save it in your working directory. Also, create a Python script file
and name it vdp_pp.py. Start by copying the commands:

import numpy as N
import pylab as P
from pymodelica import compile_fmu
from pyfmi import load_fmu

into the Python file. Compile and load the model:

# Define model file name and class name
model_name = 'VDP'
mofile = 'VDP.mo'

# Compile model
fmu_name = compile_fmu(model_name,mofile)

Next, we define the initial conditions for which the parameter sweep will be done. The state x2 starts at 0, whereas
the initial condition for x1 is swept between -3 and 3:

# Define initial conditions
N_points = 11
x1_0 = N.linspace(-3.,3.,N_points)
x2_0 = N.zeros(N_points)

In order to visualize the results of the simulations, we open a plot window:

fig = P.figure()
P.clf()
P.hold(True)
P.xlabel('x1')
P.ylabel('x2')

The actual parameter sweep is done by looping over the initial condition vectors and in each iteration set the
parameter values into the model, simulate and plot:

for i in range(N_points):
    # Load model
    vdp = load_fmu(fmu_name)  
    # Set initial conditions in model
    vdp.set('x1_0',x1_0[i])
    vdp.set('x2_0',x2_0[i])
    # Simulate 
    res = vdp.simulate(final_time=20)
    # Get simulation result
    x1=res['x1']
    x2=res['x2']
    # Plot simulation result in phase plane plot
    P.plot(x1, x2,'b')
P.grid()
P.show()
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You should now see a plot similar to that in Figure 5.4, “Simulation result-phase plane”.

Figure 5.4. Simulation result-phase plane

4.3. Simulation of an Engine model with inputs

In this example the model is larger than the previous. It is a slightly modified version of the model
EngineV6_analytic from the Multibody library in the Modelica Standard Library. The modification consists of a
replaced load with a user defined load. This has been done in order to be able to demonstrate how inputs are set
from a Python script. In Figure 5.5, “Overview of the Engine model” the model is shown.

Figure 5.5. Overview of the Engine model

The Modelica code for the model is shown below, copy and save the code in a file named EngineV6.mo.

model EngineV6_analytic_with_input
  output Real engineSpeed_rpm= Modelica.SIunits.Conversions.to_rpm(load.w);
  output Real engineTorque = filter.u;
  output Real filteredEngineTorque = filter.y;
  
  input Real u;
  
  import Modelica.Mechanics.*;

  inner MultiBody.World world;
  MultiBody.Examples.Loops.Utilities.EngineV6_analytic engine(redeclare 
      model Cylinder = MultiBody.Examples.Loops.Utilities.Cylinder_analytic_CAD);
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  Rotational.Components.Inertia load(
    phi(start=0,fixed=true), w(start=10,fixed=true),
    stateSelect=StateSelect.always,J=1);
  Rotational.Sensors.TorqueSensor torqueSensor;
  Rotational.Sources.Torque torque;
  
  Modelica.Blocks.Continuous.CriticalDamping filter(
    n=2,initType=Modelica.Blocks.Types.Init.SteadyState,f=5);

equation 
  torque.tau = u;
  
  connect(world.frame_b, engine.frame_a);
  connect(torque.flange, load.flange_b);
  connect(torqueSensor.flange_a, engine.flange_b);
  connect(torqueSensor.flange_b, load.flange_a);
  connect(torqueSensor.tau, filter.u);
  annotation (experiment(StopTime=1.01));

end EngineV6_analytic_with_input;

Now that the model has been defined, we create our Python script which will compile, simulate and visualize the
result for us. Create a new text-file and start by copying the below commands into the file. The code will import
the necessary methods and packages into Python.

from pymodelica import compile_fmu
from pyfmi import load_fmu
import pylab as P

Compiling the model is performed by invoking the compile_fmu method where the first argument is the name of
the model and the second argument is where the model is located (which file). The method will create an FMU in
the current directory and in order to simulate the FMU, we need to additionally load the created FMU into Python.
This is done with the load_fmu method which takes the name of the FMU as input.

name = compile_fmu("EngineV6_analytic_with_input", "EngineV6.mo")

model = load_fmu(name)

So, now that we have compiled the model and loaded it into Python we are almost ready to simulate the model.
First however, we retrieve the simulation options and specify how many result points we want to receive after
a simulation.

opts = model.simulate_options()
opts["ncp"] = 1000 #Specify that 1000 output points should be returned

A simulation is finally performed using the simulate method on the model and as we have changed the options,
we need to additionally provide these options to the simulate method.

res = model.simulate(options=opts)

The simulation result is returned and stored into the res object. Result for a trajectory is easily retrieved using
a Python dictionary syntax. Below is the visualization code for viewing the engine torque and the engine speed.
One could instead use the Plot GUI for the visualization as the result are stored in a file in the current directory.

P.subplot(211)
P.suptitle("EngineV6")
P.plot(res["time"],res["filteredEngineTorque"], label="Filtered Engine Torque")
P.grid()
P.legend()
P.ylabel("Torque [N.m]")
P.subplot(212)
P.plot(res["time"],res["engineSpeed_rpm"], label="Engine Speed")
P.grid()
P.legend()
P.xlabel("Time [s]")
P.ylabel("Speed [1/min]")
P.show()
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In Figure 5.6, “Resulting trajectories for the engine model.” the trajectories are shown.

Figure 5.6. Resulting trajectories for the engine model.

Above we have simulated the engine model and looked at the result, we have not however specified any load as
input. Remember that the model we are looking at has a user specified load. Now we will create a Python function
that will act as our input. We create a function that depends on the time and returns the value for use as input.

def input_func(t):
    return -100.0*t

In order to use this input in the simulation, simply provide the name of the input variable and the function as the
input argument to the simulate method, see below.

res = model.simulate(options=opts, input=("u",input_func))

Simulate the model again and look at the result and the impact of the input.

Large models contain an enormous amount of variables and by default, all of these variables are stored in the result.
Storing the result takes time and for large models the saving of the result may be responsible for the majority of
the overall simulation time. Not all variables may be of interest, for example in our case, we are only interested
in two variables so storing the other variables are not necessary. In the options dictionary there is a filter option
which allows to specify which variables should be stored, so in our case, try the below filter and look at the impact
on the simulation time.

opts["filter"] = ["filteredEngineTorque", "engineSpeed_rpm"]

4.4. Simulation using the native FMI interface

This example shows how to use the native JModelica.org FMI interface for simulation of an FMU (FMI 1.0 for
Model Exchange). The FMU that is to be simulated is the bouncing ball example from Qtronics FMU SDK (http://
www.qtronic.de/en/fmusdk.html). This example is written similar to the example in the documentation of the
'Functional Mock-up Interface for Model Exchange' version 1.0 (https://www.fmi-standard.org/). The bouncing
ball model is to be simulated using the explicit Euler method with event detection.

The example can also be found in the Python examples catalog in the JModelica.org platform.

The bouncing ball consists of two equations,
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and one event function (also commonly called root function),

Where the ball bounces and lose some of its energy according to,

Here, h is the height, g the gravity, v the velocity and e a dimensionless parameter. The starting values are, h=1
and v=0 and for the parameters, e=0.7 and g = 9.81.

4.4.1. Implementation

Start by importing the necessary modules,

import numpy as N 
import pylab as P                  # Used for plotting
from pyfmi.fmi import FMUModelME1  # The FMI Interface for Model Exchange

Next, the FMU is to be loaded and initialized

# Load the FMU by specifying the fmu together with the path.
bouncing_fmu = FMUModelME1('/path/to/FMU/bouncingBall.fmu')

Tstart = 0.5                 # The start time.
Tend   = 3.0                 # The final simulation time.  
bouncing_fmu.time = Tstart   # Set the start time before the initialization.
                             # (Defaults to 0.0)
bouncing_fmu.initialize()    # Initialize the model. Also sets all the start 
                             # attributes defined in the XML file.

The first line loads the FMU and connects the C-functions of the model to Python together with loading the
information from the XML-file. The start time also needs to be specified by setting the property time. The model
is also initialized, which must be done before the simulation is started.

Note that if the start time is not specified, FMUModelME1 tries to find the starting time in the XML-file structure
'default experiment' and if successful starts the simulation from that time. Also if the XML-file does not contain
any information about the default experiment the simulation is started from time zero.

Then information about the first step is retrieved and stored for later use.

# Get Continuous States
x = bouncing_fmu.continuous_states
# Get the Nominal Values
x_nominal = bouncing_fmu.nominal_continuous_states
# Get the Event Indicators
event_ind = bouncing_fmu.get_event_indicators()
        
# Values for the solution
vref  = [bouncing_fmu.get_variable_valueref('h')] + \
        [bouncing_fmu.get_variable_valueref('v')]        # Retrieve the valureferences for the
                                                         # values 'h' and 'v'
t_sol = [Tstart]
sol = [bouncing_fmu.get_real(vref)]

Here the continuous states together with the nominal values and the event indicators are stored to be used in the
integration loop. In our case the nominal values are all equal to one. This information is available in the XML-
file. We also create lists which are used for storing the result. The final step before the integration is started is
to define the step-size.

time = Tstart
Tnext = Tend   # Used for time events
dt = 0.01      # Step-size
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We are now ready to create our main integration loop where the solution is advanced using the explicit Euler
method.

# Main integration loop.
while time < Tend and not bouncing_fmu.get_event_info().terminateSimulation:
    #Compute the derivative of the previous step f(x(n), t(n))
    dx = bouncing_fmu.get_derivatives()
    
    # Advance
    h = min(dt, Tnext-time)
    time = time + h
            
    # Set the time
    bouncing_fmu.time = time
            
    # Set the inputs at the current time (if any)
    # bouncing_fmu.set_real,set_integer,set_boolean,set_string (valueref, values)
            
    # Set the states at t = time (Perform the step using x(n+1)=x(n)+hf(x(n), t(n))
    x = x + h*dx 
    bouncing_fmu.continuous_states = x

This is the integration loop for advancing the solution one step. The loop continues until the final time have been
reached or if the FMU reported that the simulation is to be terminated. At the start of the loop the derivatives of the
continuous states are retrieved and then the simulation time is incremented by the step-size and set to the model.
It could also be the case that the model depends on inputs which can be set using the set_(real/...) methods.

Note that only variables defined in the XML-file to be inputs can be set using the set_(real/...) methods
according to the FMI specification.

The step is performed by calculating the new states (x+h*dx) and setting the values into the model. As our model,
the bouncing ball also consist of event functions which needs to be monitored during the simulation, we have to
check the indicators which is done below.

    # Get the event indicators at t = time
    event_ind_new = bouncing_fmu.get_event_indicators()
            
    # Inform the model about an accepted step and check for step events
    step_event = bouncing_fmu.completed_integrator_step()
            
    # Check for time and state events
    time_event  = abs(time-Tnext) <= 1.e-10
    state_event = True if True in ((event_ind_new>0.0) != (event_ind>0.0)) else False

Events can be, time, state or step events. The time events are checked by continuously monitoring the current time
and the next time event (Tnext). State events are checked against sign changes of the event functions. Step events
are monitored in the FMU, in the method completed_integrator_step() and return True if any event handling
is necessary. If an event have occurred, it needs to be handled, see below.

    # Event handling
    if step_event or time_event or state_event:
        eInfo = bouncing_fmu.get_event_info()
        eInfo.iterationConverged = False
                
        # Event iteration
        while eInfo.iterationConverged == False:
            bouncing_fmu.event_update('0')       # Stops at each event iteration
            eInfo = bouncing_fmu.get_event_info()

            # Retrieve solutions (if needed)
            if eInfo.iterationConverged == False:
                # bouncing_fmu.get_real,get_integer,get_boolean,get_string(valueref)
                pass
                
        # Check if the event affected the state values and if so sets them
        if eInfo.stateValuesChanged:
            x = bouncing_fmu.continuous_states
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        # Get new nominal values.
        if eInfo.stateValueReferencesChanged:
            atol = 0.01*rtol*bouncing_fmu.nominal_continuous_states
                    
        # Check for new time event
        if eInfo.upcomingTimeEvent:
            Tnext = min(eInfo.nextEventTime, Tend)
        else:
            Tnext = Tend

If an event occurred, we enter the iteration loop where we loop until the solution of the new states have converged.
During this iteration we can also retrieve the intermediate values with the normal get methods. At this point
eInfo contains information about the changes made in the iteration. If the state values have changed, they are
retrieved. If the state references have changed, meaning that the state variables no longer have the same meaning
as before by pointing to another set of continuous variables in the model, for example in the case with dynamic
state selection, new absolute tolerances are calculated with the new nominal values. Finally the model is checked
for a new time event.

    event_ind = event_ind_new
        
    # Retrieve solutions at t=time for outputs
    # bouncing_fmu.get_real,get_integer,get_boolean,get_string (valueref)
            
    t_sol += [time]
    sol += [bouncing_fmu.get_real(vref)]

In the end of the loop, the solution is stored and the old event indicators are stored for use in the next loop.

After the loop have finished, by reaching the final time, we plot the simulation results

# Plot the height
P.figure(1)
P.plot(t_sol,N.array(sol)[:,0])
P.title(bouncing_fmu.get_name())
P.ylabel('Height (m)')
P.xlabel('Time (s)')
# Plot the velocity
P.figure(2)
P.plot(t_sol,N.array(sol)[:,1])
P.title(bouncing_fmu.get_name())
P.ylabel('Velocity (m/s)')
P.xlabel('Time (s)')
P.show()

and the figure below shows the results.

Figure 5.7. Simulation result
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4.5. Simulation of Co-Simulation FMUs

Simulation of a Co-Simulation FMU follows the same workflow as simulation of a Model Exchange FMU. The
model we would like to simulate is a model of a bouncing ball, the file bouncingBall.fmu is located in the
examples folder in the JModelica.org installation, pyfmi/examples/files/CS1.0/. The FMU is a Co-simulation
FMU and in order to simulate it, we start by importing the necessary methods and packages into Python:

import pylab as P           # For plotting
from pyfmi import load_fmu  # For loading the FMU 

Here, we have imported packages for plotting and the method load_fmu which takes as input an FMU and then
determines the type and returns the appropriate class. Now, we need to load the FMU.

model = load_fmu('bouncingBall.fmu')

The model object can now be used to interact with the FMU, setting and getting values for instance. A simulation
is performed by invoking the simulate method:

res = model.simulate(final_time=2.)

As a Co-Simulation FMU contains its own integrator, the method simulate calls this integrator. Finally, plotting
the result is done as before:

# Retrieve the result for the variables
h_res = res['h']
v_res = res['v']
t     = res['time'] 
# Plot the solution
# Plot the height
fig = P.figure()
P.clf()
P.subplot(2,1,1)
P.plot(t, h_res)
P.ylabel('Height (m)')
P.xlabel('Time (s)')
# Plot the velocity
P.subplot(2,1,2)
P.plot(t, v_res)
P.ylabel('Velocity (m/s)')
P.xlabel('Time (s)')
P.suptitle('FMI Bouncing Ball')
P.show()

and the figure below shows the results.

Figure 5.8. Simulation result
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Chapter 6. Optimization
1. Introduction
JModelica.org supports optimization of dynamic and steady state models. Many engineering problems can be
cast as optimization problems, including optimal control, minimum time problems, optimal design, and model
calibration. These different types of problems will be illustrated and it will be shown how they can be formulated
and solved. The chapter starts with an introductory example in Section 2, “A first example” and in Section 3,
“Solving optimization problems”, the details of how the optimization algorithms are invoked are explained. The
following sections contain tutorial exercises that illustrates how to set up and solve different kinds of optimization
problems.

When formulating optimization problems, models are expressed in the Modelica language, whereas optimization
specifications are given in the Optimica extension which is described in Chapter 8, Optimica. The tutorial exercises
in this chapter assumes that the reader is familiar with the basics of Modelica and Optimica.

2. A first example
In this section, a simple optimal control problem will be solved. Consider the optimal control problem for the Van
der Pol oscillator model:

optimization VDP_Opt (objectiveIntegrand = x1^2 + x2^2 + u^2,
                      startTime = 0,
                      finalTime = 20)

  // The states
  Real x1(start=0,fixed=true);
  Real x2(start=1,fixed=true);

  // The control signal
  input Real u;

equation
  der(x1) = (1 - x2^2) * x1 - x2 + u;
  der(x2) = x1;
constraint 
   u<=0.75;
end VDP_Opt;

Create a new file named VDP_Opt.mop and save it in you working directory. Notice that this model contains both
the dynamic system to be optimized and the optimization specification. This is possible since Optimica is an
extension of Modelica and thereby supports also Modelica constructs such as variable declarations and equations.
In most cases, however, Modelica models are stored separately from the Optimica specifications.

Next, create a Python script file and a write (or copy paste) the following commands:

# Import the function for transfering a model to CasADiInterface
from pyjmi import transfer_optimization_problem

# Import the plotting library
import matplotlib.pyplot as plt

Next, we transfer the model:

# Transfer the optimization problem to casadi
 op = transfer_optimization_problem("VDP_pack.VDP_Opt2", "VDP_Opt.mop")

The function transfer_optimization_problem transfers the optimization problem into Python and expresses
it's variables, equations, etc., using the automatic differentiation tool CasADi. This object represents the compiled
model and is used to invoke the optimization algorithm:

res = op.optimize()
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In this case, we use the default settings for the optimization algorithm. The result object can now be used to access
the optimization result:

# Extract variable profiles
x1=res['x1']
x2=res['x2']
u=res['u']
t=res['time']

The variable trajectories are returned as NumPy arrays and can be used for further analysis of the optimization
result or for visualization:

plt.figure(1)
plt.clf()
plt.subplot(311)
plt.plot(t,x1)
plt.grid()
plt.ylabel('x1')

plt.subplot(312)
plt.plot(t,x2)
plt.grid()
plt.ylabel('x2')

plt.subplot(313)
plt.plot(t,u)
plt.grid()
plt.ylabel('u')
plt.xlabel('time')
plt.show()

You should now see the optimization result as shown in Figure 6.1, “Optimal profiles for the VDP oscillator”.

Figure 6.1. Optimal profiles for the VDP oscillator

Optimal control and state profiles for the Van Der Pol optimal control problem.

3. Solving optimization problems
The first step when solving an optimization problem is to formulate a model and an optimization specification
and then compile the model as described in the following sections in this chapter. There are currently three dif-
ferent optimization algorithms available in JModelica.org, which are suitable for different classes of optimization
problems.

• Dynamic optimization of DAEs using direct collocation with CasADi. This algorithm is the default algorithm
for solving optimal control and parameter estimation problems. It is implemented in Python, uses CasADi for
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computing function derivatives and the nonlinear programming solvers IPOPT or WORHP for solving the
resulting NLP. In terms of functionality, this algorithm is very similar to the deprecated JMU-based algorithm,
but offers significant performance improvements in several regards. Use this method if your model is a DAE
and does not contain discontinuities.

• Derivative free calibration and optimization of ODEs with FMUs. This algorithm solves parameter opti-
mization and model calibration problems and is based on FMUs. The algorithm is implemented in Python and
relies on a Nelder-Mead derivative free optimization algorithm. Use this method if your model is of large scale
and has a modest number of parameters to calibrate and/or contains discontinuities or hybrid elements. Note that
this algorithm is applicable to models which have been exported as FMUs also by other tools than JModelica.org.

• Dynamic optimization of DAEs using direct collocation with JMUs (Deprecated in JModelica.org 1.15).
This algorithm is implemented in C, uses CppAD for computing function derivatives and IPOPT for solving
the resulting nonlinear program (NLP).

To illustrate how to solve optimization problems the Van der Pol problem presented above is used. First, the model
is transferred into Python

op = transfer_optimization_problem("VDP_pack.VDP_Opt2", "VDP_Opt.mop")

All operations that can be performed on the model are available as methods of the op object and
can be accessed by tab completion. Invoking an optimization algorithm is done by calling the method
OptimizationProblem.optimize, which performs the following tasks:

• Sets up the selected algorithm with default or user defined options

• Invokes the algorithm to find a numerical solution to the problem

• Writes the result to a file

• Returns a result object from which the solution can be retrieved

The interactive help for the optimize method is displayed by the command:

>>> help(op.optimize)
    Solve an optimization problem.
        
    Parameters::
        
        algorithm --
            The algorithm which will be used for the optimization is 
            specified by passing the algorithm class name as string or 
            class object in this argument. 'algorithm' can be any 
            class which implements the abstract class AlgorithmBase 
            (found in algorithm_drivers.py). In this way it is 
            possible to write custom algorithms and to use them with this 
            function.
    
            The following algorithms are available:
            - 'LocalDAECollocationAlg'. This algorithm is based on
              direct collocation on finite elements and the algorithm IPOPT
              is used to obtain a numerical solution to the problem.
            Default: 'LocalDAECollocationAlg'
            
        options -- 
            The options that should be used in the algorithm. The options
            documentation can be retrieved from an options object:
            
                >>> myModel = OptimizationProblem(...)
                >>> opts = myModel.optimize_options()
                >>> opts?
    
            Valid values are: 
            - A dict that overrides some or all of the algorithm's default values. 
              An empty  dict will thus give all options with default values.
            - An Options object for the corresponding algorithm, e.g. 
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              LocalDAECollocationAlgOptions for LocalDAECollocationAlg.
            Default: Empty dict
        
    Returns::
        
        A result object, subclass of algorithm_drivers.ResultBase.

The optimize method can be invoked without any arguments, in which case the default optimization algorithm,
with default options, is invoked:

res = vdp.optimize()

In the remainder of this chapter the available algorithms are described in detail. Options for an algorithm can be
set using the options argument to the optimize method. It is convenient to first obtain an options object in order
to access the documentation and default option values. This is done by invoking the method optimize_options:

>>> help(op.optimize_options)
    Returns an instance of the optimize options class containing options 
    default values. If called without argument then the options class for 
    the default optimization algorithm will be returned.
    
    Parameters::
    
        algorithm --
            The algorithm for which the options class should be returned. 
            Possible values are: 'LocalDAECollocationAlg'.
            Default: 'LocalDAECollocationAlg'
            
    Returns::
    
        Options class for the algorithm specified with default values.

The option object is essentially a Python dictionary and options are set simply by using standard dictionary syntax:

opts = vdp.optimize_options()
opts['n_e'] = 5

The optimization algorithm may then be invoked again with the new options:

res = vdp.optimize(options=opts)

Available options for each algorithm are documented in their respective sections in this Chapter.

The optimize method returns a result object containing the optimization result and some meta information about
the solution. The most common operation is to retrieve variable trajectories from the result object:

time = res['time']
x1 = res['x1']

Variable data is returned as NumPy arrays. The result object also contains references to the model that was opti-
mized, the name of the result file that was written to disk, a solver object representing the optimization algorithm
and an options object that was used when solving the optimization problem.

4. Scaling
Many physical models contain variables with values that differ by several orders of magnitude. A typical example
is thermodynamic models containing pressures, temperatures and mass flows. Such large differences in scales may
have a severe deteriorating effect on the performance of numerical algorithms, and may in some cases even lead to
the algorithm failing. In order to relieve the user from the burden of manually scaling variables, Modelica offers the
nominal attribute, which can be used to automatically scale a model. Consider the Modelica variable declaration:

Real pressure(start=101.3e3, nominal=1e5);

Here, the nominal attribute is used to specify that the variable pressure takes on values which are on the order of
1e5. In order to use nominal attributes for scaling with CasADi-based algorithms, scaling is enabled by setting the
algorithm option variable_scaling to True, and is enabled by default . When scaling is enabled, all variables
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with a set nominal attribute are then scaled by dividing the variable value with its nominal value, i.e., from an
algorithm point of view, all variables should take on values close to one. Notice that variables typically vary during
a simulation or optimization and that it is therefore not possible to obtain perfect scaling. In order to ensure that
model equations are fulfilled, each occurrence of a variable is multiplied with its nominal value in equations. For
example, the equation:

T = f(p)

is replaced by the equation

T_scaled*T_nom = f(p_scaled*p_nom)

when variable scaling is enabled.

The algorithm in Section 5, “Dynamic optimization of DAEs using direct collocation with CasADi” also has
support for providing trajectories (obtained by for example simulation) that are used for scaling. This means that
it usually is not necessary to provide nominal values for all variables, and that it is possible to use time-varying
scaling factors.

For debugging purposes, it is sometimes useful to write a simulation/optimization/initialization result to file
in scaled format, in order to detect if there are some variables which require additional scaling. The option
write_scaled_result has been introduced as an option to the initialize, simulate and optimize methods
for this purpose.

5. Dynamic optimization of DAEs using direct colloca-
tion with CasADi

5.1. Algorithm overview

The direct collocation method can be used to solve dynamic optimization problems, including optimal control
problems and parameter optimization problems. In the collocation method, the dynamic model variable profiles
are approximated by piecewise polynomials. This method of approximating a differential equation corresponds to
a fixed step implicit Runge-Kutta scheme, where the mesh defines the length of each step. Also, the number of
collocation points in each element, or step, needs to be provided. This number corresponds to the stage order of
the Runge-Kutta scheme. The selection of mesh is analogous to the choice of step length in a one-step algorithm
for solving differential equations. Accordingly, the mesh needs to be fine-grained enough to ensure sufficiently
accurate approximation of the differential constraint. For an overview of simultaneous optimization algorithms,
see [2]. The nonlinear programming solvers IPOPT and WORHP can be used to solve the nonlinear program re-
sulting from collocation. The needed first- and second-order derivatives are obtained using CasADi by algorithmic
differentiation.

The NLP solvers require that the model equations are twice continuously differentiable with respect to all of the
variables. This for example means that the model can not contain integer variables or if clauses depending on
the states.

Optimization models are represented using the class OptimizationProblem, which can be instantiated using the
transfer_optimization_problem method. An object containing all the options for the optimization algorithm
can be retrieved from the object:

from pyjmi import transfer_optimization_problem
op = transfer_optimization_problem(class_name, optimica_file_path)
opts = op.optimize_options()
opts? # View the help text

After options have been set, the options object can be propagated to the optimize method, which solves the
optimization problem:

res = op.optimize(options=opts)

The standard options for the algorithm are shown in Table 6.1, “Standard options for the CasADi- and colloca-
tion-based optimization algorithm”. Additional documentation is available in the Python class documentation.



Optimization

45

The algorithm also has a lot of experimental options, which are not as well tested and some are intended for
debugging purposes. These are shown in Table 6.2, “Experimental and debugging options for the CasADi- and
collocation-based optimization algorithm”, and caution is advised when changing their default values.

Table 6.1. Standard options for the CasADi- and collocation-based optimization
algorithm

Option Default Description

n_e 50 Number of finite elements.

hs None Element lengths. Possible values: None, iterable
of floats and "free" None: The element lengths are
uniformly distributed. iterable of floats: Compo-
nent i of the iterable specifies the length of element
i. The lengths must be normalized in the sense that
the sum of all lengths must be equal to 1. "free":
The element lengths become optimization variables
and are optimized according to the algorithm option
free_element_lengths_data. WARNING: The "free"
option is very experimental and will not always give
desirable results.

n_cp 3 Number of collocation points in each element.

expand_to_sx "NLP" Whether to expand the CasADi MX graphs to SX
graphs. Possible values: "NLP", "DAE", "no". "NLP":
The entire NLP graph is expanded into SX. This will
lead to high evaluation speed and high memory con-
sumption. "DAE": The DAE, objective and constraint
graphs for the dynamic optimization problem expres-
sions are expanded into SX, but the full NLP graph is
an MX graph. This will lead to moderate evaluation
speed and moderate memory consumption. "no": All
constructed graphs are MX graphs. This will lead to
low evaluation speed and low memory consumption.

init_traj None Variable trajectory data used for initialization of the
NLP variables.

nominal_traj None Variable trajectory data used for scaling of the NLP
variables. This option is only applicable if variable
scaling is enabled.

blocking_factors None (not used) Blocking factors are used to enforce piecewise
constant inputs. The inputs may only change val-
ues at some of the element boundaries. The option
is either None (disabled), given as an instance of
pyjmi.optimization.casadi_collocation.BlockingFactors
or as a list of blocking factors. If the options is a list
of blocking factors, then each element in the list spec-
ifies the number of collocation elements for which
all of the inputs must be constant. For example, if
blocking_factors == [2, 2, 1], then the inputs will at-
tain 3 different values (number of elements in the list),
and it will change values between collocation element
number 2 and 3 as well as number 4 and 5. The sum
of all elements in the list must be the same as the num-
ber of collocation elements and the length of the list
determines the number of separate values that the in-
puts may attain. See the documentation of the Block-
ingFactors class for how to use it. If blocking_factors
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Option Default Description

is None, then the usual collocation polynomials are in-
stead used to represent the controls.

external_data None Data used to penalize, constrain or eliminate certain
variables.

delayed_feedback None If not None, should be a dict with mappings
'delayed_var': ('undelayed_var', delay_ne).
For each key-value pair, adds the the constraint
that the variable 'delayed_var' equals the val-
ue of the variable 'undelayed_var' delayed by
delay_ne elements. The initial part of the trajectory
for 'delayed_var' is fixed to its initial guess given by
the init_traj option or the initialGuess attribute.
'delayed_var' will typically be an input. This is an
experimental feature and is subject to change.

solver 'IPOPT' Specifies the nonlinear programming solver to be used.
Possible choices are 'IPOPT' and 'WORHP'.

IPOPT_options IPOPT defaults IPOPT options for solution of NLP. See IPOPT's doc-
umentation for available options.

WORHP_options WORHP defaults WORHP options for solution of NLP. See WORHP's
documentation for available options.

Table 6.2. Experimental and debugging options for the CasADi- and collocation-based
optimization algorithm

Option Default Description

free_element_lengths_dataNone Data used for optimizing the element lengths if they
are free. Should be None when hs != "free".

discr 'LGR' Determines the collocation scheme used to discretize
the problem. Possible values: "LG" and "LGR". "LG":
Gauss collocation (Legendre-Gauss) "LGR": Radau
collocation (Legendre-Gauss-Radau).

named_vars False If enabled, the solver will create a duplicated set of
NLP variables which have names corresponding to the
Modelica/Optimica variable names. Symbolic expres-
sions of the NLP consisting of the named variables
can then be obtained using the get_named_var_expr
method of the collocator class. This option is only in-
tended for investigative purposes.

init_dual None Dictionary containing vectors of initial guess for NLP
dual variables. Intended to be obtained as the solu-
tion of an optimization problem which has an identical
structure, which is stored in the dual_opt attribute of
the result object. The dictionary has two keys, 'g' and
'x', containing vectors of the corresponding dual vari-
able intial guesses. Note that when using IPOPT, the
option warm_start_init_point has to be activated for
this option to have an effect.

variable_scaling True Whether to scale the variables according to their
nominal values or the trajectories provided with the
nominal_traj option.

equation_scaling False Whether to scale the equations in collocated NLP.
Many NLP solvers default to scaling the equations, but
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Option Default Description

if it is done through this option the resulting scaling
can be inspected.

nominal_traj_mode {"_default_mode": "lin-
ear"}

Mode for computing scaling factors based on nominal
trajectories. Four possible modes: "attribute": Time-
invariant, linear scaling based on Nominal attribute
"linear": Time-invariant, linear scaling "affine": Time-
invariant, affine scaling "time-variant": Time-vari-
ant, linear scaling Option is a dictionary with variable
names as keys and corresponding scaling modes as
values. For all variables not occuring in the keys of the
dictionary, the mode specified by the "_default_mode"
entry will be used, which by default is "linear".

result_file_name "" Specifies the name of the file where the result is writ-
ten. Setting this option to an empty string results in a
default file name that is based on the name of the mod-
el class.

write_scaled_result False Return the scaled optimization result if set to True,
otherwise return the unscaled optimization result. This
option is only applicable when variable_scaling is en-
abled and is only intended for debugging.

print_condition_numbersFalse Prints the condition numbers of the Jacobian of the
constraints and of the simplified KKT matrix at the
initial and optimal points. Note that this is only feasi-
ble for very small problems.

result_mode 'collocation_points' Specifies the output format of the optimization
result. Possible values: "collocation_points",
"element_interpolation" and "mesh_points"
"collocation_points": The optimization result is giv-
en at the collocation points as well as the start and fi-
nal time point. "element_interpolation": The values
of the variable trajectories are calculated by evaluat-
ing the collocation polynomials. The algorithm option
n_eval_points is used to specify the evaluation points
within each finite element. "mesh_points": The opti-
mization result is given at the mesh points.

n_eval_points 20 The number of evaluation points used in each ele-
ment when the algorithm option result_mode is set
to "element_interpolation". One evaluation point is
placed at each element end-point (hence the option
value must be at least 2) and the rest are distributed
uniformly.

checkpoint False If checkpoint is set to True, transcribed NLP is built
with packed MX functions. Instead of calling the DAE
residual function, the collocation equation function,
and the lagrange term function n_e * n_cp times, the
check point scheme builds an MXFunction evaluating
n_cp collocation points at the same time, so that the
packed MXFunction is called only n_e times. This ap-
proach improves the code generation and it is expected
to reduce the memory usage for constructing and solv-
ing the NLP.

quadrature_constraint True Whether to use quadrature continuity constraints. This
option is only applicable when using Gauss colloca-
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Option Default Description

tion. It is incompatible with eliminate_der_var set to
True. True: Quadrature is used to get the values of the
states at the mesh points. False: The Lagrange basis
polynomials for the state collocation polynomials are
evaluated to get the values of the states at the mesh
points.

mutable_external_data True If true and the external_data option is used, the ex-
ternal data can be changed after discretization, e.g.
during warm starting.

The last standard options, IPOPT_options and WORHP_options, serve as interfaces for setting options in IPOPT
and WORHP. To exemplify the usage of these algorithm options, the maximum number of iterations in IPOPT
can be set using the following syntax:

opts = model.optimize_options()
opts["IPOPT_options"]["max_iter"] = 10000

JModelica.org's CasADi based framework does not support simulation and initialization of models. It is recom-
mended to use PyFMI for these purposes instead.

Some statistics from the NLP solver can be obtained by issuing the command

res_opt.get_solver_statistics()

The return argument of this function can be found by using the interactive help:

help(res_opt.get_solver_statistics)
Get nonlinear programming solver statistics.
    
Returns::
    
    return_status -- 
        Return status from nonlinear programming solver.
            
    nbr_iter -- 
        Number of iterations.
            
    objective -- 
       Final value of objective function.
            
    total_exec_time -- 
        Execution time.

5.1.1. Reusing the same discretization for several optimization solutions

When collocation is used to solve a dynamic optimization problem, the solution procedure is carried out in several
steps:

• Discretize the dynamic optimization problem, which is formulated in continuous time. The result is a large and
sparse nonlinear program (NLP). The discretization step depends on the options as provided to the optimize
method.

• Solve the NLP.

• Postprocess the NLP solution to extract an approximate solution to the original dynamic optimization problem.

Depending on the problem, discretization may account for a substantial amount of the total solution time, or even
dominate it.

The same discretization can be reused for several solutions with different parameter values, but the same op-
tions. Discretization will be carried out each time the optimize method is called on the model. Instead of calling
model.optimize(options=opts), a problem can be discretized using the prepare_optimization method:

solver = model.prepare_optimization(options=opts)
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Alternatively, the solver can be retrieved from an existing optimization result, as solver = res.get_solver().
Manipulating the solver (e.g. setting parameters) may affect the original optimization problem object and vice
versa.

The obtained solver object represents the discretized problem, and can be used to solve it using its own optimize
method:

res = solver.optimize()

While options cannot be changed in general, parameter values, initial trajectories, external data, and NLP solver
options can be changed on the solver object. Parameter values can be updated with

solver.set(parameter_name, value)

and current values retrieved with

solver.get(parameter_name)

New initial trajectories can be set with

solver.set_init_traj(init_traj)

where init_traj has the same format as used with the init_traj option.

External data can be updated with

solver.set_external_variable_data(variable_name, data)

(unless the mutable_external_data option is turned off). variable_name should correspond to one of the vari-
ables used in the external_data option passed to prepare_optimization. data should be the new data, in the
same format as variable data used in the external_data option. The kind of external data used for the variable
(eliminated/constrained/quadratic penalty) is not changed.

Settings to the nonlinear solver can be changed with

solver.set_solver_option(solver_name, name, value)

where solver_name is e g 'IPOPT' or 'WORHP'.

5.1.2. Warm starting

The solver object obtained from prepare_optimization can also be used for warm starting, where an obtained
optimization solution (including primal and dual variables) is used as the initial guess for a new optimization with
new parameter values.

To reuse the solver's last obtained solution as initial guess for the next optimization, warm starting can be enabled
with

solver.set_warm_start(True)

before calling solver.optimize(). This will reuse the last solution for the primal variables (unless
solver.set_init_traj was called since the last solver.optimize) as well as the last solution for the dual vari-
ables.

When using the IPOPT solver with warm starting, several solver options typically also need to be set to see the
benefits, e g:

def set_warm_start_options(solver, push=1e-4, mu_init=1e-1):    
    solver.set_solver_option('IPOPT', 'warm_start_init_point', 'yes')
    solver.set_solver_option('IPOPT', 'mu_init', mu_init)

    solver.set_solver_option('IPOPT', 'warm_start_bound_push', push)
    solver.set_solver_option('IPOPT', 'warm_start_mult_bound_push', push)
    solver.set_solver_option('IPOPT', 'warm_start_bound_frac', push)
    solver.set_solver_option('IPOPT', 'warm_start_slack_bound_frac', push)
    solver.set_solver_option('IPOPT', 'warm_start_slack_bound_push', push)
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set_warm_start_options(solver)

Smaller values of the push and mu arguments will make the solver place more trust in that the sought solution is
close to the initial guess, i e, the last solution.

5.2. Examples

5.2.1. Optimal control

This tutorial is based on the Hicks-Ray Continuously Stirred Tank Reactors (CSTR) system. The model was
originally presented in [1]. The system has two states, the concentration, c, and the temperature, T. The control
input to the system is the temperature, Tc, of the cooling flow in the reactor jacket. The chemical reaction in the
reactor is exothermic, and also temperature dependent; high temperature results in high reaction rate. The CSTR
dynamics are given by:

This tutorial will cover the following topics:

• How to solve a DAE initialization problem. The initialization model has equations specifying that all deriva-
tives should be identically zero, which implies that a stationary solution is obtained. Two stationary points,
corresponding to different inputs, are computed. We call the stationary points A and B respectively. Point A
corresponds to operating conditions where the reactor is cold and the reaction rate is low, whereas point B cor-
responds to a higher temperature where the reaction rate is high.

• An optimal control problem is solved where the objective is to transfer the state of the system from stationary
point A to point B. The challenge is to ignite the reactor while avoiding uncontrolled temperature increases. It is
also demonstrated how to set parameter and variable values in a model. More information about the simultaneous
optimization algorithm can be found at JModelica.org API documentation.

• The optimization result is saved to file and then the important variables are plotted.

The Python commands in this tutorial may be copied and pasted directly into a Python shell, in some cases with
minor modifications. Alternatively, you may copy the commands into a text file, e.g., cstr_casadi.py.

Start the tutorial by creating a working directory and copy the file $JMODELICA_HOME/Python/pyjmi/exam-
ples/files/CSTR.mop to your working directory. An online version of CSTR.mop is also available (depending on
which browser you use, you may have to accept the site certificate by clicking through a few steps). If you choose
to create a Python script file, save it to the working directory.

5.2.1.1. Compile and instantiate a model object

The functions and classes used in the tutorial script need to be imported into the Python script. This is done by
the following Python commands. Copy them and paste them either directly into your Python shell or, preferably,
into your Python script file.

import numpy as N
import matplotlib.pyplot as plt

from pymodelica import compile_fmu
from pyfmi import load_fmu
from pyjmi import transfer_optimization_problem

To solve the initialization problem and simulate the model, we will first compile it as an FMU and load it in
Python. These steps are described in more detail in Section 4.

# Compile the stationary initialization model into an FMU
init_fmu = compile_fmu("CSTR.CSTR_Init", "CSTR.mop")
    
# Load the FMU
init_model = load_fmu(init_fmu)

https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files/CSTR.mop
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At this point, you may open the file CSTR.mop, containing the CSTR model and the static initialization model
used in this section. Study the classes CSTR.CSTR and CSTR.CSTR_Init and make sure you understand the models.
Before proceeding, have a look at the interactive help for one of the functions you used:

help(compile_fmu)

5.2.1.2. Solve the DAE initialization problem

In the next step, we would like to specify the first operating point, A, by means of a constant input cooling tem-
perature, and then solve the initialization problem assuming that all derivatives are zero.

# Set input for Stationary point A
Tc_0_A = 250
init_model.set('Tc', Tc_0_A)

# Solve the initialization problem using FMI
init_model.initialize()

# Store stationary point A
[c_0_A, T_0_A] = init_model.get(['c', 'T'])

# Print some data for stationary point A
print(' *** Stationary point A ***')
print('Tc = %f' % Tc_0_A)
print('c = %f' % c_0_A)
print('T = %f' % T_0_A)

Notice how the method set is used to set the value of the control input. The initialization algorithm is invoked by
calling the method initialize, which returns a result object from which the initialization result can be accessed.
The values of the states corresponding to point A can then be extracted from the result object. Look carefully at
the printouts in the Python shell to see the stationary values. Display the help text for the initialize method and
take a moment to look it through. The procedure is now repeated for operating point B:

# Set inputs for Stationary point B
init_model.reset() # reset the FMU so that we can initialize it again
Tc_0_B = 280
init_model.set('Tc', Tc_0_B)

# Solve the initialization problem using FMI
init_model.initialize()

# Store stationary point B
[c_0_B, T_0_B] = init_model.get(['c', 'T'])

# Print some data for stationary point B
print(' *** Stationary point B ***')
print('Tc = %f' % Tc_0_B)
print('c = %f' % c_0_B)
print('T = %f' % T_0_B)

We have now computed two stationary points for the system based on constant control inputs. In the next section,
these will be used to set up an optimal control problem.

5.2.1.2.1. Solving an optimal control problem

The optimal control problem we are about to solve is given by

and is expressed in Optimica format in the class CSTR.CSTR_Opt2 in the CSTR.mop file above. Have a look at this
class and make sure that you understand how the optimization problem is formulated and what the objective is.
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Direct collocation methods often require good initial guesses in order to ensure robust convergence. Also, if the
problem is non-convex, initialization is even more critical. Since initial guesses are needed for all discretized
variables along the optimization interval, simulation provides a convenient means to generate state and derivative
profiles given an initial guess for the control input(s). It is then convenient to set up a dedicated model for com-
putation of initial trajectories. In the model CSTR.CSTR_Init_Optimization in the CSTR.mop file, a step input
is applied to the system in order obtain an initial guess. Notice that the variable names in the initialization model
must match those in the optimal control model.

First, compile the model and set model parameters:

# Compile the optimization initialization model
init_sim_fmu = compile_fmu("CSTR.CSTR_Init_Optimization", "CSTR.mop")

# Load the model
init_sim_model = load_fmu(init_sim_fmu)

# Set initial and reference values
init_sim_model.set('cstr.c_init', c_0_A)
init_sim_model.set('cstr.T_init', T_0_A)
init_sim_model.set('c_ref', c_0_B)
init_sim_model.set('T_ref', T_0_B)
init_sim_model.set('Tc_ref', Tc_0_B)

Having initialized the model parameters, we can simulate the model using the simulate function.

# Simulate with constant input Tc
init_res = init_sim_model.simulate(start_time=0., final_time=150.)

The method simulate first computes consistent initial conditions and then simulates the model in the interval 0
to 150 seconds. Take a moment to read the interactive help for the simulate method.

The simulation result object is returned. Python dictionary access can be used to retrieve the variable trajectories.

# Extract variable profiles
t_init_sim = init_res['time']
c_init_sim = init_res['cstr.c']
T_init_sim = init_res['cstr.T']
Tc_init_sim = init_res['cstr.Tc']

# Plot the initial guess trajectories
plt.close(1)
plt.figure(1)
plt.hold(True)
plt.subplot(3, 1, 1)
plt.plot(t_init_sim, c_init_sim)
plt.grid()
plt.ylabel('Concentration')
plt.title('Initial guess obtained by simulation')

plt.subplot(3, 1, 2)
plt.plot(t_init_sim, T_init_sim)
plt.grid()
plt.ylabel('Temperature')

plt.subplot(3, 1, 3)
plt.plot(t_init_sim, Tc_init_sim)
plt.grid()
plt.ylabel('Cooling temperature')
plt.xlabel('time')
plt.show()

Look at the plots and try to relate the trajectories to the optimal control problem. Why is this a good initial guess?

Once the initial guess is generated, we compile the optimal control problem:

# Compile and load optimization problem
op = transfer_optimization_problem("CSTR.CSTR_Opt2", "CSTR.mop")
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We will now initialize the parameters of the model so that their values correspond to the optimization objective
of transferring the system state from operating point A to operating point B. Accordingly, we set the parameters
representing the initial values of the states to point A and the reference values in the cost function to point B:

# Set reference values
op.set('Tc_ref', Tc_0_B)
op.set('c_ref', float(c_0_B))
op.set('T_ref', float(T_0_B))

# Set initial values
op.set('cstr.c_init', float(c_0_A))
op.set('cstr.T_init', float(T_0_A))

We will also set some optimization options. In this case, we decrease the number of finite elements in the mesh
from 50 to 19, to be able to illustrate that simulation and optimization might not give the exact same result. This is
done by setting the corresponding option and providing it as an argument to the optimize method. We also lower
the tolerance of IPOPT to get a more accurate result. We are now ready to solve the actual optimization problem.
This is done by invoking the method optimize:

# Set options
opt_opts = op.optimize_options()
opt_opts['n_e'] = 19 # Number of elements
opt_opts['init_traj'] = init_res
opt_opts['nominal_traj'] = init_res
opt_opts['IPOPT_options']['tol'] = 1e-10

# Solve the optimal control problem
res = op.optimize(options=opt_opts)

You should see the output of IPOPT in the Python shell as the algorithm iterates to find the optimal solution.
IPOPT should terminate with a message like 'Optimal solution found' or 'Solved to acceptable level' in order for an
optimum to have been found. The optimization result object is returned and the optimization data are stored in res.

We can now retrieve the trajectories of the variables that we intend to plot:

# Extract variable profiles
c_res = res['cstr.c']
T_res = res['cstr.T']
Tc_res = res['cstr.Tc']
time_res = res['time']
c_ref = res['c_ref']
T_ref = res['T_ref']
Tc_ref = res['Tc_ref']

Finally, we plot the result using the functions available in matplotlib:

# Plot the results
plt.close(2)
plt.figure(2)
plt.hold(True)
plt.subplot(3, 1, 1)
plt.plot(time_res, c_res)
plt.plot(time_res, c_ref, '--')
plt.grid()
plt.ylabel('Concentration')
plt.title('Optimized trajectories')

plt.subplot(3, 1, 2)
plt.plot(time_res, T_res)
plt.plot(time_res, T_ref, '--')
plt.grid()
plt.ylabel('Temperature')

plt.subplot(3, 1, 3)
plt.plot(time_res, Tc_res)
plt.plot(time_res, Tc_ref, '--')
plt.grid()
plt.ylabel('Cooling temperature')
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plt.xlabel('time')
plt.show()

You should now see the plot shown in Figure 6.2, “Optimal profiles for the CSTR problem.”.

Figure 6.2. Optimal profiles for the CSTR problem.

Take a minute to analyze the optimal profiles and to answer the following questions:

1. Why is the concentration high in the beginning of the interval?

2. Why is the input cooling temperature high in the beginning of the interval?

5.2.1.3. Verify optimal control solution

Solving optimal control problems by means of direct collocation implies that the differential equation is approxi-
mated by a time-discrete counterpart. The accuracy of the solution is dependent on the method of collocation and
the number of elements. In order to assess the accuracy of the discretization, we may simulate the system using the
optimal control profile as input. With this approach, the state profiles are computed with high accuracy and the re-
sult may then be compared with the profiles resulting from optimization. Notice that this procedure does not verify
the optimality of the resulting optimal control profiles, but only the accuracy of the discretization of the dynamics.

We start by compiling and loading the model used for simulation:

# Compile model
sim_fmu = compile_fmu("CSTR.CSTR", "CSTR.mop")

# Load model
sim_model = load_fmu(sim_fmu)

The solution obtained from the optimization are values at a finite number of time points, in this case the collocation
points. The CasADi framework also supports obtaining all the collocation polynomials for all the input variables
in the form of a function instead, which can be used during simulation for greater accuracy. We obtain it from
the result object in the following manner.

# Get optimized input
(_, opt_input) = res.get_opt_input()

We specify the initial values and simulate using the optimal trajectory:

# Set initial values
sim_model.set('c_init', c_0_A)
sim_model.set('T_init', T_0_A)

# Simulate using optimized input
sim_opts = sim_model.simulate_options()
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sim_opts['CVode_options']['rtol'] = 1e-6
sim_opts['CVode_options']['atol'] = 1e-8
res = sim_model.simulate(start_time=0., final_time=150.,
                         input=('Tc', opt_input), options=sim_opts)

Finally, we load the simulated data and plot it to compare with the optimized trajectories:

# Extract variable profiles
c_sim=res['c']
T_sim=res['T']
Tc_sim=res['Tc']
time_sim = res['time']

# Plot the results
plt.figure(3)
plt.clf()
plt.hold(True)
plt.subplot(311)
plt.plot(time_res,c_res,'--')
plt.plot(time_sim,c_sim)
plt.legend(('optimized','simulated'))
plt.grid()
plt.ylabel('Concentration')

plt.subplot(312)
plt.plot(time_res,T_res,'--')
plt.plot(time_sim,T_sim)
plt.legend(('optimized','simulated'))
plt.grid()
plt.ylabel('Temperature')

plt.subplot(313)
plt.plot(time_res,Tc_res,'--')
plt.plot(time_sim,Tc_sim)
plt.legend(('optimized','simulated'))
plt.grid()
plt.ylabel('Cooling temperature')
plt.xlabel('time')
plt.show()

You should now see the plot shown in Figure 6.3, “Optimal control profiles and simulated trajectories correspond-
ing to the optimal control input.”.

Figure 6.3. Optimal control profiles and simulated trajectories corresponding to the
optimal control input.

Discuss why the simulated trajectories differ from their optimized counterparts.
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5.2.1.4. Exercises

After completing the tutorial you may continue to modify the optimization problem and study the results.

1. Remove the constraint on cstr.T. What is then the maximum temperature?

2. Play around with weights in the cost function. What happens if you penalize the control variable with a larger
weight? Do a parameter sweep for the control variable weight and plot the optimal profiles in the same figure.

3. Add terminal constraints (cstr.T(finalTime)=someParameter) for the states so that they are equal to point
B at the end of the optimization interval. Now reduce the length of the optimization interval. How short can
you make the interval?

4. Try varying the number of elements in the mesh and the number of collocation points in each interval.

5.2.1.5. References

[1] G.A. Hicks and W.H. Ray. Approximation Methods for Optimal Control Synthesis. Can. J. Chem. Eng.,
40:522–529, 1971.

[2] Bieger, L., A. Cervantes, and A. Wächter (2002): "Advances in simultaneous strategies for dynamic optimiza-
tion." Chemical Engineering Science, 57, pp. 575-593.

5.2.2. Minimum time problems

Minimum time problems are dynamic optimization problems where not only the control inputs are optimized,
but also the final time. Typically, elements of such problems include initial and terminal state constraints and an
objective function where the transition time is minimized. The following example will be used to illustrate how
minimum time problems are formulated in Optimica. We consider the optimization problem:

subject to the Van der Pol dynamics:

and the constraints:

This problem is encoded in the following Optimica specification:

optimization VDP_Opt_Min_Time (objective = finalTime,
                               startTime = 0,
                               finalTime(free=true,min=0.2,initialGuess=1)) 

  // The states
  Real x1(start = 0,fixed=true);
  Real x2(start = 1,fixed=true);

  // The control signal
  input Real u(free=true,min=-1,max=1);

equation
  // Dynamic equations
  der(x1) = (1 - x2^2) * x1 - x2 + u;
  der(x2) = x1;

constraint
  // terminal constraints
  x1(finalTime)=0;
  x2(finalTime)=0;
end VDP_Opt_Min_Time;
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Notice how the class attribute finalTime is set to be free in the optimization. The problem is solved by the
following Python script:

# Import numerical libraries
import numpy as N
import matplotlib.pyplot as plt

# Import the JModelica.org Python packages
from pymodelica import compile_fmu
from pyfmi import load_fmu
from pyjmi import transfer_optimization_problem

vdp = transfer_optimization_problem("VDP_Opt_Min_Time", "VDP_Opt_Min_Time.mop")
res = vdp.optimize()

# Extract variable profiles
x1=res['x1']
x2=res['x2']
u=res['u']
t=res['time']

# Plot
plt.figure(1)
plt.clf()
plt.subplot(311)
plt.plot(t,x1)
plt.grid()
plt.ylabel('x1')

plt.subplot(312)
plt.plot(t,x2)
plt.grid()
plt.ylabel('x2')

plt.subplot(313)
plt.plot(t,u,'x-')
plt.grid()
plt.ylabel('u')
plt.xlabel('time')
plt.show()

The resulting control and state profiles are shown in Figure 6.4, “Minimum time profiles for the Van der Pol
Oscillator.”. Notice the difference as compared to Figure Figure 6.1, “Optimal profiles for the VDP oscillator”,
where the Van der Pol oscillator system is optimized using a quadratic objective function.

Figure 6.4. Minimum time profiles for the Van der Pol Oscillator.
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5.2.3. Optimization under delay constraints

In some applications, it can be useful to solve dynamic optimization problems that include time delays in the
model. Collocation based optimization schemes are well suited to handle this kind of models, since the whole state
trajectory is available at the same time. The direct collocation method using CasADi contains an experimental
implementation of such delays, which we will describe with an example. Please note that the implementation of
this feature is experimental and subject to change.

We consider the optimization problem

subject to the dynamics

and the boundary conditions

The effect of positive  is initially to increase , but after a time delay of time , it comes back with twice
the effect in the negative direction through .

We model everything except the delay constraint in the Optimica specification

optimization DelayTest(startTime = 0, finalTime = 1,
                       objectiveIntegrand = 4*x^2 + u1^2 + u2^2)
    input Real u1, u2;
    Real x(start = 1, fixed=true);
equation
    der(x) = u1 - 2*u2;
constraint
    x(finalTime) = 0;
end DelayTest;

The problem is then solved in the following Python script. Notice how the delay constraint is added using the
delayed_feedback option, and the initial part of  is set using the initialGuess attribute:

# Import numerical libraries
import numpy as np
import matplotlib.pyplot as plt

# Import JModelica.org Python packages
from pyjmi import transfer_optimization_problem

n_e = 20
delay_n_e = 5
horizon = 1.0
delay = horizon*delay_n_e/n_e

# Compile and load optimization problem
opt = transfer_optimization_problem("DelayTest", "DelayedFeedbackOpt.mop")

# Set value for u2(t) when t < delay
opt.getVariable('u2').setAttribute('initialGuess', 0.25)
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# Set algorithm options
opts = opt.optimize_options()
opts['n_e'] = n_e
# Set delayed feedback from u1 to u2
opts['delayed_feedback'] = {'u2': ('u1', delay_n_e)}

# Optimize
res = opt.optimize(options=opts)

# Extract variable profiles
x_res = res['x']
u1_res = res['u1']
u2_res = res['u2']
time_res = res['time']

# Plot results
plt.plot(time_res, x_res, time_res, u1_res, time_res, u2_res)
plt.hold(True)
plt.plot(time_res+delay, u1_res, '--')
plt.hold(False)
plt.legend(('x', 'u1', 'u2', 'delay(u1)'))
plt.show()

The resulting control and state profiles are shown in Figure 6.5, “Optimization result for delayed feedback exam-
ple.”. Notice that  grows initially since  is set positive to exploit the greater control gain that appears delayed
through . At time , the delayed value of  ceases to influence  within the horizon, and  immediately
switches sign to drive down  to its final value .

Figure 6.5. Optimization result for delayed feedback example.

5.2.4. Parameter estimation

In this tutorial it will be demonstrated how to solve parameter estimation problems. We consider a quadruple tank
system depicted in Figure 6.6, “A schematic picture of the quadruple tank process.”.
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Figure 6.6. A schematic picture of the quadruple tank process.

The dynamics of the system are given by the differential equations:

Where the nominal parameter values are given in Table 6.3, “Parameters for the quadruple tank process.”.

Table 6.3. Parameters for the quadruple tank process.

Parameter name Value Unit

Ai 4.9 cm2

ai 0.03 cm2

ki 0.56 cm2V-1s-1

#i 0.3 Vcm-1

The states of the model are the tank water levels x1, x2, x3, and x4. The control inputs, u1 and u2, are the flows
generated by the two pumps.

The Modelica model for the system is located in QuadTankPack.mop. Download the file to your working directory
and open it in a text editor. Locate the class QuadTankPack.QuadTank and make sure you understand the model.
In particular, notice that all model variables and parameters are expressed in SI units.

Measurement data, available in qt_par_est_data.mat, has been logged in an identification experiment. Down-
load also this file to your working directory.

Open a text file and name it qt_par_est_casadi.py. Then enter the imports:

import os
from collections import OrderedDict

from scipy.io.matlab.mio import loadmat
import matplotlib.pyplot as plt
import numpy as N

https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files/QuadTankPack.mop
https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files/qt_par_est_data.mat
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from pymodelica import compile_fmu
from pyfmi import load_fmu
from pyjmi import transfer_optimization_problem
from pyjmi.optimization.casadi_collocation import ExternalData

into the file. Next, we compile the model, which is used for simulation, and the optimization problem, which is
used for estimating parameter values. We will take a closer look at the optimization formulation later, so do not
worry about that one for the moment. The initial states for the experiment are stored in the optimization problem,
which we propagate to the model for simulation.

# Compile and load FMU, which is used for simulation
model = load_fmu(compile_fmu('QuadTankPack.QuadTank', "QuadTankPack.mop"))

# Transfer problem to CasADi Interface, which is used for estimation
op = transfer_optimization_problem("QuadTankPack.QuadTank_ParEstCasADi",
                                   "QuadTankPack.mop")

# Set initial states in model, which are stored in the optimization problem
x_0_names = ['x1_0', 'x2_0', 'x3_0', 'x4_0']
x_0_values = op.get(x_0_names)
model.set(x_0_names, x_0_values)

Next, we enter code to open the data file, extract the measurement time series and plot the measurements:

# Load measurement data from file
data = loadmat("qt_par_est_data.mat", appendmat=False)

# Extract data series
t_meas = data['t'][6000::100, 0] - 60
y1_meas = data['y1_f'][6000::100, 0] / 100
y2_meas = data['y2_f'][6000::100, 0] / 100
y3_meas = data['y3_d'][6000::100, 0] / 100
y4_meas = data['y4_d'][6000::100, 0] / 100
u1 = data['u1_d'][6000::100, 0]
u2 = data['u2_d'][6000::100, 0]

# Plot measurements and inputs
plt.close(1)
plt.figure(1)
plt.subplot(2, 2, 1)
plt.plot(t_meas, y3_meas)
plt.title('x3')
plt.grid()
plt.subplot(2, 2, 2)
plt.plot(t_meas, y4_meas)
plt.title('x4')
plt.grid()
plt.subplot(2, 2, 3)
plt.plot(t_meas, y1_meas)
plt.title('x1')
plt.xlabel('t[s]')
plt.grid()
plt.subplot(2, 2, 4)
plt.plot(t_meas, y2_meas)
plt.title('x2')
plt.xlabel('t[s]')
plt.grid()

plt.close(2)
plt.figure(2)
plt.subplot(2, 1, 1)
plt.plot(t_meas, u1)
plt.hold(True)
plt.title('u1')
plt.grid()
plt.subplot(2, 1, 2)
plt.plot(t_meas, u2)
plt.title('u2')
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plt.xlabel('t[s]')
plt.hold(True)
plt.grid()
plt.show()

You should now see two plots showing the measurement state profiles and the control input profiles similar to
Figure 6.7, “Measured state profiles.” and Figure 6.8, “Control inputs used in the identification experiment.”.

Figure 6.7. Measured state profiles.

Figure 6.8. Control inputs used in the identification experiment.

In order to evaluate the accuracy of nominal model parameter values, we simulate the model using the same
initial state and inputs values as in the performed experiment used to obtain the measurement data. First, a matrix
containing the input trajectories is created:

# Build input trajectory matrix for use in simulation
u = N.transpose(N.vstack([t_meas, u1, u2]))

Now, the model can be simulated:

# Simulate model response with nominal parameter values
res_sim = model.simulate(input=(['u1', 'u2'], u),
                         start_time=0., final_time=60.)
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The simulation result can now be extracted:

# Load simulation result
x1_sim = res_sim['x1']
x2_sim = res_sim['x2']
x3_sim = res_sim['x3']
x4_sim = res_sim['x4']
t_sim  = res_sim['time']
u1_sim = res_sim['u1']
u2_sim = res_sim['u2']

and then plotted:

# Plot simulation result
plt.figure(1)
plt.subplot(2, 2, 1)
plt.plot(t_sim, x3_sim)
plt.subplot(2, 2, 2)
plt.plot(t_sim, x4_sim)
plt.subplot(2, 2, 3)
plt.plot(t_sim, x1_sim)
plt.subplot(2, 2, 4)
plt.plot(t_sim, x2_sim)

plt.figure(2)
plt.subplot(2, 1, 1)
plt.plot(t_sim, u1_sim, 'r')
plt.subplot(2, 1, 2)
plt.plot(t_sim, u2_sim, 'r')
plt.show()

Figure 6.9, “Simulation result for the nominal model.” shows the result of the simulation.

Figure 6.9. Simulation result for the nominal model.

Here, the simulated profiles are given by the green curves. Clearly, there is a mismatch in the response, especially
for the two lower tanks. Think about why the model does not match the data, i.e., which parameters may have
wrong values.

The next step towards solving a parameter estimation problem is to identify which parameters to tune. Typically,
parameters which are not known precisely are selected. Also, the selected parameters need of course affect the mis-
match between model response and data, when tuned. In a first attempt, we aim at decreasing the mismatch for the
two lower tanks, and therefore we select the lower tank outflow areas, a1 and a2, as parameters to optimize. The Op-
timica specification for the estimation problem is contained in the class QuadTankPack.QuadTank_ParEstCasADi:

optimization QuadTank_ParEstCasADi(startTime=0, finalTime=60)
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    extends QuadTank(x1(fixed=true), x1_0=0.06255,
                     x2(fixed=true), x2_0=0.06045,
                     x3(fixed=true), x3_0=0.02395,
                     x4(fixed=true), x4_0=0.02325,
                     a1(free=true, min=0, max=0.1e-4),
                     a2(free=true, min=0, max=0.1e-4));
                     
end QuadTank_ParEstCasADi;

We have specified the time horizon to be one minute, which matches the length of the experiment, and that we
want to estimate a1 and a2 by setting free=true for them. Unlike optimal control, the cost function is not specified
using Optimica. This is instead specified from Python, using the ExternalData class and the code below.

# Create external data object for optimization
Q = N.diag([1., 1., 10., 10.])
data_x1 = N.vstack([t_meas, y1_meas])
data_x2 = N.vstack([t_meas, y2_meas])
data_u1 = N.vstack([t_meas, u1])
data_u2 = N.vstack([t_meas, u2])
quad_pen = OrderedDict()
quad_pen['x1'] = data_x1
quad_pen['x2'] = data_x2
quad_pen['u1'] = data_u1
quad_pen['u2'] = data_u2
external_data = ExternalData(Q=Q, quad_pen=quad_pen)

This will create an objective which is the integral of the squared difference between the measured profiles for x1
and x2 and the corresponding model profiles. We will also introduce corresponding penalties for the two input
variables, which are left as optimization variables. It would also have been possible to eliminate the input variables
from the estimation problem by using the eliminated parameter of ExternalData. See the documentation of
ExternalData for how to do this. Finally, we use a square matrix Q to weight the different components of the
objective. We choose larger weights for the inputs, as we have larger faith in those values.

We are now ready to solve the optimization problem. We first set some options, where we specify the number of
elements (time-discretization grid), the external data, and also provide the simulation with the nominal parameter
values as an initial guess for the solution, which is also used to scale the variables instead of the variables' nominal
attributes (if they have any):

# Set optimization options and optimize
opts = op.optimize_options()
opts['n_e'] = 60 # Number of collocation elements
opts['external_data'] = external_data
opts['init_traj'] = res_sim
opts['nominal_traj'] = res_sim
res = op.optimize(options=opts) # Solve estimation problem

Now, let's extract the optimal values of the parameters a1 and a2 and print them to the console:

# Extract estimated values of parameters
a1_opt = res.initial("a1")
a2_opt = res.initial("a2")

# Print estimated parameter values
print('a1: ' + str(a1_opt*1e4) + 'cm^2')
print('a2: ' + str(a2_opt*1e4) + 'cm^2')

You should get an output similar to:

a1: 0.0266cm^2
a2: 0.0271cm^2

The estimated values are slightly smaller than the nominal values - think about why this may be the case. Also
note that the estimated values do not necessarily correspond to the physically true values. Rather, the parameter
values are adjusted to compensate for all kinds of modeling errors in order to minimize the mismatch between
model response and measurement data.
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Next we plot the optimized profiles:

# Load state profiles
x1_opt = res["x1"]
x2_opt = res["x2"]
x3_opt = res["x3"]
x4_opt = res["x4"]
u1_opt = res["u1"]
u2_opt = res["u2"]
t_opt  = res["time"]

# Plot estimated trajectories
plt.figure(1)
plt.subplot(2, 2, 1)
plt.plot(t_opt, x3_opt, 'k')
plt.subplot(2, 2, 2)
plt.plot(t_opt, x4_opt, 'k')
plt.subplot(2, 2, 3)
plt.plot(t_opt, x1_opt, 'k')
plt.subplot(2, 2, 4)
plt.plot(t_opt, x2_opt, 'k')

plt.figure(2)
plt.subplot(2, 1, 1)
plt.plot(t_opt, u1_opt, 'k')
plt.subplot(2, 1, 2)
plt.plot(t_opt, u2_opt, 'k')
plt.show()

You will see the plot shown in Figure 6.10, “State profiles corresponding to estimated values of a1 and a2.”.

Figure 6.10. State profiles corresponding to estimated values of a1 and a2.

The profiles corresponding to the estimated values of a1 and a2 are shown in black curves. As can be seen, the
match between the model response and the measurement data has been significantly improved. Is the behavior of
the model consistent with the estimated parameter values?

Nevertheless, there is still a mismatch for the upper tanks, especially for tank 4. In order to improve the match, a
second estimation problem may be formulated, where the parameters a1, a2, a3, a4 are free optimization variables,
and where the squared errors of all four tank levels are penalized. Do this as an exercise!

5.3. Investigating optimization progress

This section describes some tools that can be used to investigate the progress of the nonlinear programming solver
on an optimization problem. This information can be useful when debugging convergence problems; some of it
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(e.g. dual variables) may also be useful to gain a better understanding of the properties of an optimization problem.
To make sense of the information that can be retrieved, we first give an overview of the collocation procedure that
transcribes the optimization problem into a Nonlinear Program (NLP).

Methods for inspecting progress are divided into low level and high level methods, where the low level methods
provide details of the underlying NLP while the high level methods are oriented towards the optimization problem
as seen in the model formulation.

All functionality related to inspection of solver progress is exposed through the solver object as returned through
the prepare_optimization method. If the optimization has been done through the optimize method instead,
the solver can be obtained as in

res = model.optimize(options=opts)
solver = res.get_solver()

5.3.1. Collocation

To be able to solve a dynamic optimization problem, it is first discretized through collocation. Time is divided
into elements (time intervals), and time varying variables are approximated by a low order polynomial over each
element. Each polynomial piece is described by sample values at a number of collocation points (default 3) within
the element. The result is that each time varying variable in the model is instantiated into one NLP variable for
each collocation point within each element. Some variables may also need to be instantiated at additional points,
such as the initial point which is typically not a collocation point.

The equations in a model are divided into initial equations, DAE equations, path constraints and point constraints.
These equations are also instantiated at different time points to become constraints in the NLP. Initial equations
and point constraints are instantiated only once. DAE equations and path constraints are instantiated at collocation
point of each element and possibly some additional points.

When using the methods described below, each model equation is referred to as a pair (eqtype, eqind). The
string eqtype may be either'initial', 'dae', 'path_eq', 'path_ineq', 'point_eq', or 'point_ineq'. The
equation index eqind gives the index within the given equation type, and is a nonnegative integer less than the num-
ber of equations within the type. The symbolic model equations corresponding to given pairs (eqtype, eqind)
can be retrieved through the get_equations method:

eq      = solver.get_equations(eqtype, 0)     # first equation of type eqtype
eqs     = solver.get_equations(eqtype, [1,3]) # second and fourth equation
all_eqs = solver.get_equations(eqtype)        # all equations of the given type

Apart from the model equations, collocation may also instantiate additional kinds of constraints, such as continuity
constraints to enforce continuity of states between elements and collocation constraints to prescribe the coupling
between states and their derivatives. These constraints have their own eqtype strings. A list of all equation types
that are used in a given model can be retrieved using

eqtypes = solver.get_constraint_types()

5.3.2. Inspecting residuals

Given a potential solution to the NLP, the residual of a constraint is a number that specifies how close it is to
being satisfied. For equalities, the residual must be (close to) zero for the solution to be feasible. For inequalities,
the residual must be in a specified range, typically nonpositive. The constraint violation is zero if the residual is
within bounds, and gives the signed distance to the closest bound otherwise; for equality constraints, this is the
same as the residual. Methods for returning residuals actually return the violation by default, but have an option
to get the raw residual.

For a feasible solution, all violations are (almost) zero. If an optimization converges to an infeasible point or does
not have time to converge to a feasible one then the residuals show which constraints the NLP solver was unable
to satisfy. If one problematic constraint comes into conflict with a number of constraints, all of them will likely
have nonzero violations.

Residual values for a given equation type can be retrieved as a function of time through
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r = solver.get_residuals(eqtype)

where r is an array of residuals of shape (n_timepoints, n_equations). There are also optional arguments:
inds gives a subset of equation indices (e.g. inds=[0, 1]), point specifies whether to evaluate residuals at the
optimization solution (point='opt', default) or the initial point (point='init'), and raw specifies whether to
return constraint violations (raw=False, default) or raw residuals (raw=True).

The corresponding time points can be retrieved with

t, i, k = solver.get_constraint_points(eqtype)

where t, i, and k are vectors that give the time, element index, and collocation point index for each instantiation.

To get an overview of which residuals are the largest,

solver.get_residual_norms()

returns a list of equation types sorted by descending residual norm, and

solver.get_residual_norms(eqtype)

returns a list of equation indices of the given type sorted by residual norm.

By default, the methods above work with the unscaled residuals that result directly from collocation. If the
equation_scaling option is turned on, the constraints will be rescaled before they are sent to the NLP solver.
It might be of more interest to look at the size of the scaled residuals, since these are what the NLP solver will
try to make small. The above methods can then be made to work with the scaled residuals instead of the unscaled
by use of the scaled=True keyword argument. The residual scale factors can also be retrieved in analogy to
solver.get_residuals through

scales = solver.get_residual_scales(eqtype)

and an overview of the residual scale factors (or inverse scale factors with inv=True) can be gained from

solver.get_residual_scale_norms()

5.3.3. Inspecting the constraint Jacobian

When solving the collocated NLP, the NLP solver typically has to evaluate the Jacobian of the constraint residual
functions. Convergence problems can sometimes be related to numerical problems with the constraint Jacobian.
In particular, Ipopt will never consider a potential solution if there are nonfinite (infinity or not-a-number) entries
in the Jacobian. If the Jacobian has such entries at the initial guess, the optimizer will give up completely.

The constraint Jacobian comes from the NLP. As seen from the original model, it contains the derivatives of the
model equations (and also e.g. the collocation equations) with respect to the model variables at different time
points. If one or several problematic entries are found in the Jacobian, it is often helpful to know the model equation
and variable that they correspond to.

The set of (model equation, model variable) pairs that correspond to nonfinite entries in the constraint Jacobian
can be printed with

solver.print_nonfinite_jacobian_entries()

or returned with

entries = solver.find_nonfinite_jacobian_entries()

There are also methods to allow to make more custom analyses of this kind. To instead list all Jacobian entries
with an absolute value greater than 10, one can use

J = solver.get_nlp_jacobian() # Get the raw NLP constraint Jacobian as a (sparse) scipy.csc_matrix

# Find the indices of all entries with absolute value > 10
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J.data = abs(J.data) > 10
c_inds, xx_inds = N.nonzero(J)

entries = solver.get_model_jacobian_entries(c_inds, xx_inds) # Map the indices to equations and variables in the model
solver.print_jacobian_entries(entries) # Print them

To get the Jacobian with residual scaling applied, use the scaled_residuals=True option.

5.3.4. Inspecting dual variables

Many NLP solvers (including Ipopt) produce a solution that consists of not only the primal variables (the actual
NLP variables), but also one dual variable for each constraint in the NLP. Upon convergence, the value of each
dual variable gives the change in the optimal objective per unit change in the residual. Thus, the dual variables can
give an idea of which constraints are most hindering when it comes to achieving a lower objective value, however,
they must be interpreted in relation to how much it might be possible to change any given constraint.

Dual variable values for a given equation type can be retrieved as a function of time through

d = solver.get_constraint_duals(eqtype)

in analogy to solver.get_residuals. To get constraint duals for the equation scaled problem, use the
scaled=True keyword argument. Just as with get_residuals, the corresponding time points can be retrieved with

t, i, k = solver.get_constraint_points(eqtype)

Besides regular constraints, the NLP can also contain upper and lower bounds on variables. These will correspond
to the Modelica min and max attributes for instantiated model variables. The dual variables for the bounds on a
given model variable var can be retrieved as a function of time through

d = solver.get_bound_duals(var)

The corresponding time points can be retrieved with

t, i, k = solver.get_variable_points(var)

5.3.5. Inspecting low level information about NLP solver progress

The methods described above generally hide the actual collocated NLP and only require to work with model
variables and equations, instantiated at different points. There also exist lower level methods that expose the
NLP level information and its mapping to the original model more directly, and may be useful for more custom
applications. These include

• get_nlp_variables, get_nlp_residuals, get_nlp_bound_duals, and get_nlp_constraint_duals to get
raw vectors from the NLP solution.

• get_nlp_variable_bounds and get_nlp_residual_bounds to get the corresponding bounds used in the NLP.

• get_nlp_residual_scales to get the raw residual scale factors.

• get_nlp_variable_indices and get_nlp_constraint_indices to get mappings from model variables and
equations to their NLP counterparts.

• get_point_time to get the times of collocation points (i, k).

• get_model_variables and get_model_constraints to map from NLP variables and constraints to the cor-
responding model variables and equations.

The low level constraint Jacobian methods get_nlp_jacobian, get_model_jacobian_entries, and the
print_jacobian_entries method have already been covered in the section about jacobians above.

See the docstring for the respective method for more information.
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6. Derivative-Free Model Calibration of FMUs

Figure 6.11. The Furuta pendulum.

This tutorial demonstrates how to solve a model calibration problem using an algorithm that can be applied to
Functional Mock-up Units. The model to be calibrated is the Furuta pendulum shown in Figure 6.11, “The Furuta
pendulum.”. The Furuta pendulum consists of an arm rotating in the horizontal plane and a pendulum which is free
to rotate in the vertical plane. The construction has two degrees of freedom, the angle of the arm, , and the angle of
the pendulum, . Copy the file $JMODELICA_HOME/Python/pyjmi/examples/files/FMUs/Furuta.fmu to your
working directory. Note that the Furuta.fmu file is currently only supported on Windows. Measurement data
for  and  is available in the file $JMODELICA_HOME/Python/pyjmi/examples/files/FurutaData.mat. Copy
this file to your working directory as well. These measurements will be used for the calibration. Open a text file,
name it furuta_par_est.py and enter the following imports:

from scipy.io.matlab.mio import loadmat
import matplotlib.pyplot as plt
import numpy as N
from pyfmi import load_fmu
from pyjmi.optimization import dfo

Then, enter code for opening the data file and extracting the measurement time series:

# Load measurement data from file
data = loadmat('FurutaData.mat',appendmat=False)
# Extract data series
t_meas = data['time'][:,0]
phi_meas = data['phi'][:,0]
theta_meas = data['theta'][:,0]

Now, plot the measurements:

# Plot measurements
plt.figure (1)
plt.clf()
plt.subplot(2,1,1)
plt.plot(t_meas,theta_meas,label='Measurements')
plt.title('theta [rad]')
plt.legend(loc=1)
plt.grid ()
plt.subplot(2,1,2)
plt.plot(t_meas,phi_meas,label='Measurements')
plt.title('phi [rad]')
plt.legend(loc=1)
plt.grid ()
plt.show ()
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This code should generate Figure 6.12, “Measurements of  and  for the Furuta pendulum.” showing the mea-
surements of  and .

Figure 6.12. Measurements of  and  for the Furuta pendulum.

To investigate the accuracy of the nominal parameter values in the model, we shall now simulate the model:

# Load model
model = load_fmu("Furuta.fmu")
# Simulate model response with nominal parameters
res = model.simulate(start_time=0.,final_time=40)
# Load simulation result
phi_sim = res['armJoint.phi']
theta_sim = res['pendulumJoint.phi']
t_sim = res['time']

Then, we plot the simulation result:

# Plot simulation result
plt.figure (1)
plt.subplot(2,1,1)
plt.plot(t_sim,theta_sim,'--',label='Simulation nominal parameters')
plt.legend(loc=1)
plt.subplot(2,1,2)
plt.plot(t_sim,phi_sim,'--',label='Simulation nominal parameters')
plt.xlabel('t [s]')
plt.legend(loc=1)
plt.show ()

Figure 6.13, “Measurements and model simulation result for  and  when using nominal parameter values in the
Furuta pendulum model.” shows the simulation result together with the measurements.
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Figure 6.13. Measurements and model simulation result for  and  when using nominal
parameter values in the Furuta pendulum model.

As can be seen, the simulation result does not quite agree with the measurements. We shall now attempt to calibrate
the model by estimating the two following model parameters:

• : arm friction coefficient (nominal value 0.012)

• : pendulum friction coefficient (nominal value 0.002)

The calibration will be performed using the Nelder-Mead simplex optimization algorithm. The objective function,
i.e. the function to be minimized, is defined as:

where , i = 1,2,...,M, are the measurement time points and  is the parameter vector.  and 

are the measurements of  and , respectively, and  and  are the corresponding simulation results. Now,
add code defining a starting point for the algorithm (use the nominal parameter values) as well as lower and upper
bounds for the parameters:

# Choose starting point
x0 = N.array([0.012,0.002])*1e3
# Choose lower and upper bounds (optional)
lb = N.zeros (2)
ub = (x0 + 1e-2)*1e3

Note that the values are scaled with a factor . This is done to get a more appropriate variable size for the al-
gorithm to work with. After the optimization is done, the obtained result is scaled back again. In this calibration
problem, we shall use multiprocessing, i.e., parallel execution of multiple processes. All objective function evalu-
ations in the optimization algorithm will be performed in separate processes in order to save memory and time. To
be able to do this we need to define the objective function in a separate Python file and provide the optimization
algorithm with the file name. Open a new text file, name it furuta_cost.py and enter the following imports:

from pyfmi import load_fmu
from pyjmi.optimization import dfo
from scipy.io.matlab.mio import loadmat
import numpy as N

Then, enter code for opening the data file and extracting the measurement time series:
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# Load measurement data from file
data = loadmat('FurutaData.mat',appendmat=False)
# Extract data series
t_meas = data['time'][:,0]
phi_meas = data['phi'][:,0]
theta_meas = data['theta'][:,0]

Next, define the objective function, it is important that the objective function has the same name as the file it is
defined in (except for .py):

# Define the objective function
def furuta_cost(x):
    # Scale down the inputs x since they are scaled up
    # versions of the parameters (x = 1e3*[param1,param2])
    armFrictionCoefficient = x[0]/1e3
    pendulumFrictionCoefficient = x[1]/1e3
    # Load model
    model = load_fmu('../Furuta.fmu')
    # Set new parameter values into the model
    model.set('armFriction',armFrictionCoefficient)
    model.set('pendulumFriction',pendulumFrictionCoefficient)
    # Simulate model response with new parameter values
    res = model.simulate(start_time=0.,final_time=40)
    # Load simulation result
    phi_sim = res['armJoint.phi']
    theta_sim = res['pendulumJoint.phi']
    t_sim = res['time']
    # Evaluate the objective function
    y_meas = N.vstack((phi_meas ,theta_meas))
    y_sim = N.vstack((phi_sim,theta_sim))
    obj = dfo.quad_err(t_meas,y_meas,t_sim,y_sim)  
    return obj

This function will later be evaluated in temporary sub-directories to your working directory which is why the
string '../' is added to the FMU name, it means that the FMU is located in the parent directory. The Python
function dfo.quad_err evaluates the objective function. Now we can finally perform the actual calibration. Solve
the optimization problem by calling the Python function dfo.fmin in the file named furuta_par_est.py:

# Solve the problem using the Nelder-Mead simplex algorithm
x_opt,f_opt,nbr_iters,nbr_fevals,solve_time = dfo.fmin("furuta_cost.py",
xstart=x0,lb=lb,ub=ub,alg=1,nbr_cores=4,x_tol=1e-3,f_tol=1e-2)

The input argument alg specifies which algorithm to be used, alg=1 means that the Nelder-Mead simplex algo-
rithm is used. The number of processor cores (nbr_cores) on the computer used must also be provided when
multiprocessing is applied. Now print the optimal parameter values and the optimal function value:

# Optimal point (don't forget to scale down)
[armFrictionCoefficient_opt, pendulumFrictionCoefficient_opt] = x_opt/1e3
# Print optimal parameter values and optimal function value
print 'Optimal parameter values:'
print 'arm friction coeff = ' + str(armFrictionCoefficient_opt)
print 'pendulum friction coeff = ' + str(pendulumFrictionCoefficient_opt)
print 'Optimal function value: ' + str(f_opt)

This should give something like the following printout:

Optimal parameter values:
arm friction coeff = 0.00997223923413
pendulum friction coeff = 0.000994473020199
Optimal function value: 1.09943830585

Then, we set the optimized parameter values into the model and simulate it:

# Load model
model = load_fmu("Furuta.fmu")
# Set optimal parameter values into the model
model.set('armFriction',armFrictionCoefficient_opt)
model.set('pendulumFriction',pendulumFrictionCoefficient_opt)
# Simulate model response with optimal parameter values
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res = model.simulate(start_time=0.,final_time=40)
# Load simulation result
phi_opt = res['armJoint.phi']
theta_opt = res['pendulumJoint.phi']
t_opt = res['time']

Finally, we plot the simulation result:

# Plot simulation result
plt.figure (1)
plt.subplot(2,1,1)
plt.plot(t_opt,theta_opt,'-.',linewidth=3,
label='Simulation optimal parameters')
plt.legend(loc=1)
plt.subplot(2,1,2)
plt.plot(t_opt,phi_opt,'-.',linewidth=3,
label='Simulation optimal parameters')
plt.legend(loc=1)
plt.show ()

This should generate the Figure 6.14, “Measurements and model simulation results for  and  with nominal and
optimal parameters in the model of the Furuta pendulum.”. As can be seen, the agreement between the measure-
ments and the simulation result has improved considerably. The model has been successfully calibrated.

Figure 6.14. Measurements and model simulation results for  and  with nominal and
optimal parameters in the model of the Furuta pendulum.
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Chapter 7. Graphical User Interface
for Visualization of Results
1. Plot GUI

JModelica.org comes with a graphical user interface (GUI) for displaying simulation and / or optimization results.
The GUI supports result files generated by JModelica.org and Dymola (both binary and textual formats).

The GUI is located in the module (pyjmi/pyfmi).common.plotting.plot_gui and can be started by Windows
users by selecting the shortcut located in the start-menu under JModelica.org. The GUI can also be started by
typing the following commands in a Python shell:

from pyjmi.common.plotting import plot_gui   # or pyfmi.common.plotting import plot_gui
plot_gui.startGUI()

Note that the GUI requires the Python package wxPython.

Figure 7.1. Overview of JModelica.org Plot GUI

1.1. Introduction

An overview of the GUI is shown in Figure 7.1, “Overview of JModelica.org Plot GUI”. As can be seen, the plot
figures are located to the right and can contain multiple figures in various configurations. The left is dedicated to
show the loaded result file(s) and corresponding variables together with options for filtering time-varying variables
and parameters/constants.

Loading a result file is done using the File menu selection Open which opens a file dialog where either textual
(.txt) results or binary (.mat) results can be chosen. The result is then loaded into a tree structure which enables the
user to easily browse between components in a model, see Figure 7.2, “A result file has been loaded.” . Multiple
results can be loaded either simultaneously or separately by using the File menu option Open repeatedly.

http://www.wxpython.org/
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Figure 7.2. A result file has been loaded.

Displaying trajectories is done by simply checking the box associated with the variable of interest, see Figure 7.3,
“Plotting a trajectory.”. Removing a trajectory follows the same principle.

Figure 7.3. Plotting a trajectory.

A result can also be removed from the tree view by selecting an item in the tree and by pressing the delete key.

1.2. Edit Options

The GUI allows a range of options, see Figure 7.4, “Figure Options.”, related to how the trajectories are displayed
such as line width, color and draw style. Information about a plot can in addition be defined by setting titles and
labels. Options related to the figure can be found under the Edit menu as well as adding more plot figures.
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Figure 7.4. Figure Options.

Under Axis/Labels, see Figure 7.5, “Figure Axis and Labels Options.”, options such as defining titles and labels
in both X and Y direction can be found together with axis options.

Figure 7.5. Figure Axis and Labels Options.

Under Lines/Legends, options for specifying specific line labels and line styles can be found, see Figure 7.6,
“Figure Lines and Legends options.”. The top drop-down list contains all variables related to the highlighted figure
and the following input fields down to Legend are related to the chosen variable. The changes take effect after the
button OK has been pressed. For changing multiple lines in the same session, the Apply button should be used.
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Figure 7.6. Figure Lines and Legends options.

Additional figures can be added from the Add Plot command in the Edit menu. In Figure 7.7, “An additional
plot has been added.” an additional figure have been added.

Figure 7.7. An additional plot has been added.

The figures can be positioned by choosing a figure tab and moving it to one of the borders of the GUI. In Figure 7.8,
“Moving Plot Figure.” "Plot 1" have been dragged to the left side of the figure and a highlighted area has emerged
which shows where "Plot 1" will be positioned. In Figure 7.9, “GUI after moving the plot window.” the result
is shown.
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Figure 7.8. Moving Plot Figure.

Figure 7.9. GUI after moving the plot window.

If we are to add more figures, an increasingly complex figure layout can be created as is shown in Figure 7.10,
“Complex Figure Layout.” where figures also have been dragged to other figure headers.
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Figure 7.10. Complex Figure Layout.

1.3. View Options

Options for interacting with a figure and changing the display can be found under the View menu. The options
are to show/hide a grid, either to use the mouse to move the plot or to use the mouse for zooming and finally to
resize the plot to fit the selected variables.

Figure 7.11. Figure View Options.

Moving a figure with the move option is performed by simply pressing the left mouse button and while still holding
down the button, dragging the plot to the area of interest. A zoom operation is performed in a similar fashion.

1.4. Example

Figure 7.12, “Multiple figure example.” shows an example of how the GUI can be used to plot four different plots
with different labels. Some of the lines have also been modified in width and in line style. A grid is also shown.
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Figure 7.12. Multiple figure example.
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Chapter 8. Optimica
In this chapter, the Optimica extension will be presented and informally defined. The Optimica extension in de-
scribed in detail in [Jak2008a], where additional motivations for introducing Optimica can be found. The presen-
tation will be made using the following dynamic optimization problem, based on a double integrator system, as
an example:

subject to the dynamic constraint

and

In this problem, the final time, tf, is free, and the objective is thus to minimize the time it takes to transfer the state
of the double integrator from the point (0,0) to (1,0), while respecting bounds on the velocity v(t) and the input
u(t). A Modelica model for the double integrator system is given by:

model DoubleIntegrator
  Real x(start=0);
  Real v(start=0);
  input Real u;
equation
  der(x)=v;
  der(v)=u;
end DoubleIntegrator;

In summary, the Optimica extension consists of the following elements:

• A new specialized class: optimization

• New attributes for the built-in type Real: free and initialGuess

• A new function for accessing the value of a variable at a specified time instant

• Class attributes for the specialized class optimization: objective, startTime, finalTime and static

• A new section: constraint

• Inequality constraints

1. A new specialized class: optimization
A new specialized class, called optimization, in which the proposed Optimica-specific constructs are valid is
supported by Optimica. This approach is consistent with the Modelica language, since there are already several
other specialized classes, e.g., record, function and model. By introducing a new specialized class, it also be-
comes straightforward to check the validity of a program, since the Optimica-specific constructs are only valid in-
side an optimization class. The optimization class corresponds to an optimization problem, static or dynamic,
as specified above. Apart from the Optimica-specific constructs, an optimization class can also contain compo-
nent and variable declarations, local classes, and equations.

It is not possible to declare components from optimization classes in the current version of Optimica. Rather,
the underlying assumption is that an optimization class defines an optimization problem, that is solved off-
line. An interesting extension would, however, be to allow for optimization classes to be instantiated. With
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this extension, it would be possible to solve optimization problems, on-line, during simulation. A particularly
interesting application of this feature is model predictive control, which is a control strategy that involves on-line
solution of optimization problems during execution.

As a starting-point for the formulation of the optimization problem consider the optimization class:

optimization DIMinTime
  DoubleIntegrator di;
  input Real u = di.u;
end DIMinTime;

This class contains only one component representing the dynamic system model, but will be extended in the
following to incorporate also the other elements of the optimization problem.

2. Attributes for the built in class Real
In order to superimpose information on variable declarations, two new attributes are introduced for the built-in
type Real. Firstly, it should be possible to specify that a variable, or parameter, is free in the optimization. Modelica
parameters are normally considered to be fixed after the initialization step, but in the case of optimization, some
parameters may rather be considered to be free. In optimal control formulations, the control inputs should be
marked as free, to indicate that they are indeed optimization variables. For these reasons, a new attribute for the
built-in type Real, free, of boolean type is introduced. By default, this attribute is set to false.

Secondly, an attribute, initialGuess, is introduced to enable the user to provide an initial guess for variables and
parameters. In the case of free optimization parameters, the initialGuess attribute provides an initial guess to
the optimization algorithm for the corresponding parameter. In the case of variables, the initialGuess attribute
is used to provide the numerical solver with an initial guess for the entire optimization interval. This is particularly
important if a simultaneous or multiple-shooting algorithm is used, since these algorithms introduce optimization
variables corresponding to the values of variables at discrete points over the interval. Note that such initial guesses
may be needed both for control and state variables. For such variables, however, the proposed strategy for pro-
viding initial guesses may sometimes be inadequate. In some cases, a better solution is to use simulation data
to initialize the optimization problem. This approach is also supported by the Optimica compiler. In the double
integrator example, the control variable u is a free optimization variable, and accordingly, the free attribute is set
to true. Also, the initialGuess attribute is set to 0.0.

optimization DIMinTime
  DoubleIntegrator di(u(free=true,
                        initialGuess=0.0));
  input Real u = di.u;
end DIMinTime;

3. A Function for accessing instant values of a vari-
able
An important component of some dynamic optimization problems, in particular parameter estimation problems
where measurement data is available, is variable access at discrete time instants. For example, if a measurement
data value, yi, has been obtained at time ti, it may be desirable to penalize the deviation between yi and a corre-
sponding variable in the model, evaluated at the time instant ti. In Modelica, it is not possible to access the value
of a variable at a particular time instant in a natural way, and a new construct therefore has to be introduced.

All variables in Modelica are functions of time. The variability of variables may be different-some are continuously
changing, whereas others can change value only at discrete time instants, and yet others are constant. Nevertheless,
the value of a Modelica variable is defined for all time instants within the simulation, or optimization, interval.
The time argument of variables are not written explicitly in Modelica, however. One option for enabling access
to variable values at specified time instants is therefore to associate an implicitly defined function with a variable
declaration. This function can then be invoked by the standard Modelica syntax for function calls, y(t_i). The
name of the function is identical to the name of the variable, and it has one argument; the time instant at which the
variable is evaluated. This syntax is also very natural since it corresponds precisely to the mathematical notation of
a function. Note that the proposed syntax y(t_i) makes the interpretation of such an expression context dependent.
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In order for this construct to be valid in standard Modelica, y must refer to a function declaration. With the proposed
extension, y may refer either to a function declaration or a variable declaration. A compiler therefore needs to
classify an expression y(t_i) based on the context, i.e., what function and variable declarations are visible. This
feature of Optimica is used in the constraint section of the double integrator example, and is described below.

4. Class attributes
In the optimization formulation above, there are elements that occur only once, i.e., the cost function and the
optimization interval. These elements are intrinsic properties of the respective optimization formulations, and
should be specified, once, by the user. In this respect the cost function and optimization interval differ from, for
example, constraints, since the user may specify zero, one or more of the latter.

In order to encode these elements, class attributes are introduced. A class attribute is an intrinsic element of a
specialized class, and may be modified in a class declaration without the need to explicitly extend from a built-
in class. In the Optimica extension, four class attributes are introduced for the specialized class optimization.
These are objective, which defines the cost function, startTime, which defines the start of the optimization
interval, finalTime, which defines the end of the optimization interval, and static, which indicates whether the
class defines a static or dynamic optimization problem. The proposed syntax for class attributes is shown in the
following optimization class:

optimization DIMinTime (
        objective=finalTime,
        startTime=0,
        finalTime(free=true,initialGuess=1))
 DoubleIntegrator di(u(free=true,
                       initialGuess=0.0));
 input Real u = di.u;
end DIMinTime;

The default value of the class attribute static is false, and accordingly, it does not have to be set in this case. In
essence, the keyword extends and the reference to the built-in class have been eliminated, and the modification
construct is instead given directly after the name of the class itself. The class attributes may be accessed and
modified in the same way as if they were inherited.

5. Constraints
Constraints are similar to equations, and in fact, a path equality constraint is equivalent to a Modelica equation.
But in addition, inequality constraints, as well as point equality and inequality constraints should be supported. It is
therefore natural to have a separation between equations and constraints. In Modelica, initial equations, equations,
and algorithms are specified in separate sections, within a class body. A reasonable alternative for specifying
constraints is therefore to introduce a new kind of section, constraint. Constraint sections are only allowed inside
an optimization class, and may contain equality, inequality as well as point constraints. In the double integrator
example, there are several constraints. Apart from the constraints specifying bounds on the control input u and
the velocity v, there are also terminal constraints. The latter are conveniently expressed using the mechanism for
accessing the value of a variable at a particular time instant; di.x(finalTime)=1 and di.v(finalTime)=0. In
addition, bounds may have to be specified for the finalTime class attribute. The resulting optimization formulation
may now be written:

optimization DIMinTime (
    objective=finalTime,
    startTime=0,
    finalTime(free=true,initialGuess=1))
 DoubleIntegrator di(u(free=true,
                       initialGuess=0.0));
 input Real u = di.u; 
constraint
 finalTime>=0.5;
 finalTime<=10;
 di.x(finalTime)=1;
 di.v(finalTime)=0;
 di.v<=0.5;
 di.u>=-1; di.u<=1;
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end DIMinTime;

The Optimica specification can be translated into executable format and solved by a numerical solver, yielding
the result seen in Figure 8.1, “Optimization result”.

Figure 8.1. Optimization result
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Chapter 9. Abstract syntax tree
access
1. Tutorial on Abstract Syntax Trees (ASTs)

1.1. About Abstract Syntax Trees

A fundamental data structure in most compilers is the Abstract Syntax Tree (AST). An AST serves as an abstract
representation of a computer program and is often used in a compiler to perform analyses (e.g., binding names to
declarations and checking type correctness of a program) and as a basis for code generation.

Three different ASTs are used in the JModelica.org front-ends.

• The source AST results from parsing of the Modelica or Optimica source code. This AST shares the structure
of the source code, and consists of a hierarchy consisting of Java objects corresponding to class and component
declarations, equations and algorithms. The source AST can also be used for unparsing, i.e., pretty printing of
the source code.

• The instance AST represents a particular model instance. Typically, the user selects a class to instantiate, and
the compiler then computes the corresponding instance AST. The instance AST differs from the source AST in
that in the former case, all components are expanded down to variables of primitive type. An important feature
of the instance AST is that it is used to represent modification environments; merging of modifications takes
place in the instance AST. As a consequence, all analysis, such as name and type analysis takes is done based
on the instance AST.

• The flat AST represents the flat Modelica model. Once the instance AST has been computed, the flat AST is
computed simply by traversing the instance AST and collecting all variables of primitive type, all equations and
all algorithms. The flat AST is then used, after some transformations, as a basis for code generation.

For more information on how the JModelica.org compiler transforms these ASTs, see the paper "Implementation
of a Modelica compiler using JastAdd attribute grammars" by J.Åkesson et. al.

This tutorial demonstrates how the Python interface to the three different ASTs in the compiler can be used. The
JPype package is used to create Java objects in a Java Virtual Machine which is seamlessly integrated with the
Python shell. The Java objects can be accessed interactively and methods of the object can be invoked.

For more information about the Java classes and their methods used in this example, please consult the API docu-
mentation for the Modelica compiler. Note however that the documentation for the compiler front-ends is still very
rudimentary. Also, the interfaces to the source and instance AST will be made more user friendly in upcoming
versions.

Three different usages of ASTs are shown:

• Count the number of classes in the Modelica standard library. In this example, a Python function is defined to
traverse the source AST which results from parsing of the Modelica standard library.

• Instantiate the CauerLowPassAnalog model. The instance AST for this model is dumped and it is demonstrated
how the merged modification environments can be accessed. Also, it is shown how a component redeclaration
affects the instance tree.

• Flatten the CauerLowPassAnalog model instance and print some statistics of the flattened Model.

The Python commands in this tutorial may be copied and pasted directly into a Python shell, in some cases
with minor modifications. You are, however, strongly encouraged to copy the commands into a text file, e.g.,
ast_example.py.

Start the tutorial by creating a working directory and copy the file $JMODELICA_HOME/Python/

pyjmi/examples/files/CauerLowPassAnalog.mo to your working directory. An on-line version of



Abstract syntax tree access

86

CauerLowPassAnalog.mo is also available (depending on which browser you use, you may have to ac-
cept the site certificate by clicking through a few steps). If you choose to create Python script file,
save it to the working directory. The tutorial is based on a model from the Modelica Standard Library:
Modelica.Electrical.Analog.Basic.Examples.CauerLowPassAnalog.

1.2. Load the Modelica standard library

Before we can start working with the ASTs, we need to import the Python packages that will be used

# Import library for path manipulations
import os.path

# Import the JModelica.org Python packages
import pymodelica
from pymodelica.compiler_wrappers import ModelicaCompiler

# Import numerical libraries
import numpy as N
import ctypes as ct
import matplotlib.pyplot as plt

# Import JPype
import jpype

# Create a reference to the java package 'org'
org = jpype.JPackage('org')

Also, we need to create an instance of a Modelica compiler in order to compile models:

# Create a compiler and compiler target object
mc = ModelicaCompiler()

# Build trees as if for an FMU for ME v 1.0
target = mc.create_target_object("me", "1.0")

In order to avoid parsing the same file multiple times (we will not change the Modelica file in this tutorial), we
will check the variable source_root exists in the shell before we parse the file CauerLowPassAnalog.mo:

# Don't parse the file if it has already been parsed.
try:
    source_root.getProgramRoot()
except:
    # Parse the file CauerLowPassAnalog.mo and get the root node
    # of the source AST
    source_root = mc.parse_model("CauerLowPassAnalog.mo")

At this point, try the built-in help feature of Python by typing the following command in the shell to see the help
text for the function you just used.

In [2]: help(mc.parse_model)

In the first part of the tutorial, we will not work with the filter model, but rather load the Modelica standard library.
Again, we check if the library has already been loaded:

# Don't load the standard library if it is already loaded
try:
    modelica.getName().getID()
except NameError, e:
    # Load the Modelica standard library and get the class
    # declaration AST node corresponding to the Modelica
    # package.
    modelica = source_root.getProgram().getLibNode(0). \
               getStoredDefinition().getElement(0)

The means to access the node in the source AST corresponding to the class (package) declaration of the Modelica
library is somewhat cumbersome; the source AST interface will be improved in later versions.

https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files/CauerLowPassAnalog.mo
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1.3. Count the number of classes in the Modelica standard library

Having accessed a node in the source AST, we may now perform analysis by traversing the tree. Say that we are
interested in counting the number of classes (packages, models, blocks, functions etc.) in the Modelica standard
library. As the basis for traversing the AST, we may use the method ClassDecl.classes() that returns an iterator
over local classes contained in a class. Based on this method, a Python function for traversing the class hierarchy
of the source AST can be defined:

def count_classes(class_decl,depth):
    """ Count the number of classes hierarchically contained
    in a class declaration."""
    # Get an iterator over of local classes using the method ClassDecl.classes()
    # which returns a Java Iterable object over ClassDecl objects.
    local_classes = class_decl.classes().iterator()
       
    num_classes = 0
    # Loop over all local classes
    while local_classes.hasNext():
        # Call count_classes recursively for all local classes 
        # (including the contained class itself)
        num_classes += 1 + count_classes(local_classes.next(), depth + 1)

    # If the class declaration corresponds to a package, print
    # the number of hierarchically contained classes
    if class_decl.isPackage() and depth <= 1:
        print("The package %s has %d hierachically contained classes" \
              %(class_decl.qualifiedName(),num_classes))
            
    # Return the number of hierachically contained classes
    return num_classes

We then call the function:

# Call count_classes for 'Modelica'
num_classes = count_classes(modelica,0)

Now run the script and study the printouts in the Python shell. The first time the script is run, you will see printouts
corresponding also to the compiler accessing individual files of the Modelica standard library; the loading of the
library is done on demand as the library classes are actually accessed. Run the script once again (using the '-i'
switch), to get a cleaner output, which should now look similar to:

The package Modelica.UsersGuide has 39 hierachically contained classes
The package Modelica.Blocks has 343 hierachically contained classes
The package Modelica.ComplexBlocks has 44 hierachically contained classes
The package Modelica.StateGraph has 66 hierachically contained classes
The package Modelica.Electrical has 992 hierachically contained classes
The package Modelica.Magnetic has 174 hierachically contained classes
The package Modelica.Mechanics has 558 hierachically contained classes
The package Modelica.Fluid has 687 hierachically contained classes
The package Modelica.Media has 1791 hierachically contained classes
The package Modelica.Thermal has 95 hierachically contained classes
The package Modelica.Math has 166 hierachically contained classes
The package Modelica.ComplexMath has 31 hierachically contained classes
The package Modelica.Utilities has 97 hierachically contained classes
The package Modelica.Constants has 0 hierachically contained classes
The package Modelica.Icons has 32 hierachically contained classes
The package Modelica.SIunits has 584 hierachically contained classes
The package Modelica has 5715 hierachically contained classes

Take some time to ponder the results and make sure that you understand how the Python function count_classes
works and which Python variables corresponds to references into the source AST.

1.4. Dump the instance AST

We shall now turn our attention to the CauerLowPassAnalog model. Specifically, we would like to analyze the
instance hierarchy of the model by dumping the tree structure to the Python shell. In addition, we will look at the
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merged modification environment of each instance AST node. Again, we will use methods defined for the Java
objects representing the AST.

First we create an instance of the CauerLowPassAnalog filter. Again we only create the instance if it has not
already been created:

# Don't instantiate if instance has been computed already
try:
    filter_instance.components()
except:
    # Retrieve the node in the instance tree corresponding to the class
    # Modelica.Electrical.Analog.Examples.CauerLowPassAnalog
    filter_instance = mc.instantiate_model(source_root,"CauerLowPassAnalog", target)

Next we define a Python function for traversing the instance AST and printing each node in the shell. We also print
the merged modification environment for each instance node. In order to traverse the AST, we use the methods
InstNode.instComponentDeclList() and InstNode.instExtendsList(), which both return an object of the
class List, which in turn contain instantiated component declarations and instantiated extends clauses. By invok-
ing the dump_inst_ast function recursively for each element in these lists, the instance AST is in effect traversed.
Due to the internal representation of the instance AST, nodes of type InstPrimitive, corresponding to primitive
variables, are not leaves in the AST as would be expected. To overcome this complication, we simply check if a
node is of type InstPrimitive, and if this is the case, the recursion stops.

The environment of an instance node is accessed by calling the method InstNode.getMergedEnvrionment(),
which returns a list of modifications. According to the Modelica specification, outer modifications overrides inner
modifications, and accordingly, modifications in the beginning of the list has precedence over later modifications.

def dump_inst_ast(inst_node, indent):
    """Pretty print an instance node, including its merged enviroment."""
    
    # Get the merged environment of an instance node
    env = inst_node.getMergedEnvironment()

    # Create a string containing the type and name of the instance node
    str = indent + inst_node.prettyPrint("")
    str = str + " {"

    # Loop over all elements in the merged modification environment
    for i in range(env.size()):
        str = str + env.get(i).toString()
        if i<env.size()-1:
            str = str + ", "
        str = str + "}"

    # Print
    print(str)

    # Get all components and dump them recursively
    components = inst_node.instComponentDeclList
    
    for i in range(components.getNumChild()):
        # Assume that primitive variables are leafs in the instance AST
        if (inst_node.getClass() is \
            org.jmodelica.modelica.compiler.InstPrimitive) is False:
            dump_inst_ast(components.getChild(i),indent + "  ")

    # Get all extends clauses and dump them recursively    
    extends= inst_node.instExtendsList
    for i in range(extends.getNumChild()):
        # Assume that primitive variables are leafs in the instance AST
        if (inst_node.getClass() is \
            org.jmodelica.modelica.compiler.InstPrimitive) is False:
            dump_inst_ast(extends.getChild(i),indent + "  ")

Take a minute and make sure that you understand the essential parts of the function.

Having defined the function dump_inst_ast, we call it with the CauerLowPassAnalog instance as an argument.
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# Dump the filter instance
dump_inst_ast(filter_instance,"")

You should now see a rather lengthy printout in your shell window. Let us have a closer look at a few of the
instances in the model. First look at the printouts for a resistor in the model:

    InstComposite: Modelica.Electrical.Analog.Basic.Resistor R1 {R=1}
      InstPrimitive: SI.Resistance R {=1, start=1, final quantity="Resistance", \
                                      final unit="Ohm"}
      InstExtends: Interfaces.OnePort {R=1}
        InstPrimitive: SI.Voltage v {final quantity="ElectricPotential", final unit="V"}
        InstPrimitive: SI.Current i {final quantity="ElectricCurrent", final unit="A"}
        InstComposite: PositivePin p {}
          InstPrimitive: SI.Voltage v {final quantity="ElectricPotential", final unit="V"}
          InstPrimitive: SI.Current i {final quantity="ElectricCurrent", final unit="A"}
        InstComposite: NegativePin n {}
          InstPrimitive: SI.Voltage v {final quantity="ElectricPotential", final unit="V"}
          InstPrimitive: SI.Current i {final quantity="ElectricCurrent", final unit="A"}

The model instance if of type InstComposite, and contains two elements, one primitive variable, R, and one ex-
tends clause. The modification environment for the resistor contains a value modification '=1' and some modifi-
cations of the built in attributes for the type Real. The InstExtends node contains a number of child nodes, which
corresponds to the content of the class Interfaces.OnePort. Notice the difference between the source AST,
where an extends node is essentially a leaf in the tree, whereas in the instance tree, the extends clause is expanded.

Let us have a look at the effects of redeclarations in the instance AST. In the CauerLowPassAnalog model, a step
voltage signal source is used, which in turn relies on redeclaration of a generic signal source to a step. The instance
node for the step voltage source V is given below:

    InstComposite: Modelica.Electrical.Analog.Sources.StepVoltage V {V=0, startTime=1, \
                                                                     offset=0}
      InstPrimitive: SI.Voltage V {=0, start=1, final quantity="ElectricPotential", \
                                   final unit="V"}
      InstExtends: Interfaces.VoltageSource {V=0, startTime=1, offset=0, 
           redeclare Modelica.Blocks.Sources.Step signalSource(height=V)}
        InstPrimitive: SI.Voltage offset {=0, =0, final quantity="ElectricPotential", \
                                          final unit="V"}
        InstPrimitive: SI.Time startTime {=1, =0, final quantity="Time", final unit="s"}
        InstReplacingComposite: Modelica.Blocks.Sources.Step signalSource {height=V, \
                                          final offset=offset, final startTime=startTime}
          InstPrimitive: Real height {=V, =1}
          InstExtends: Interfaces.SignalSource {height=V, final offset=offset, \
                                                final startTime=startTime}
            InstPrimitive: Real offset {=offset, =0}
            InstPrimitive: SIunits.Time startTime {=startTime, =0, final quantity="Time", \
                                                   final unit="s"}
            InstExtends: SO {height=V, final offset=offset, final startTime=startTime}
              InstPrimitive: RealOutput y {}
              InstExtends: BlockIcon {height=V, final offset=offset, 
                                      final startTime=startTime}

Here we see how the modification redeclare Modelica.Blocks.Sources.Step signalSource(height=V) affects the
instance AST. The node InstReplacingComposite represents the component instance, instantiated from the class
Modelica.Blocks.Sources.Step, resulting from the redeclaration. As a consequence, this branch of the instance
AST is significantly altered by the redeclare modification.

Now look at the modification environment for the component instance startTime. The environment contains two
value modifications: '=1' and '=0'. As noted above, the first modification in the list corresponds to the outermost
modification and have precedence over the following modifications. Take a minute to figure out the origin of the
modifications by looking upwards in the instance AST.

1.5. Flattening of the filter model

Having computed the instance, we can now flatten the model:

# Don't flatten model if it already exists
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try:
    filter_flat_model.name()
except:
    # Flatten the model instance filter_instance
    filter_flat_model = mc.flatten_model(filter_instance, target)

During flattening, the instance tree is traversed and all primitive declarations and equations are collected. In addi-
tion, such as scalarization and elimination of alias variables are performed.

Let us have a look at the flattened model:

print(filter_flat_model)

We may also retrieve some model statistics:

print("*** Model statistics for CauerLowPassAnalog *** ")
print("Number of differentiated variables: %d" \
       % filter_flat_model.numDifferentiatedRealVariables())
print("Number of algebraic variables:      %d" \
       % filter_flat_model.numAlgebraicContinousRealVariables())
print("Number of equations:                %d" \
       % filter_flat_model.numEquations())
print("Number of initial equations:        %d" \
       % filter_flat_model.numInitialEquations())

How many variables and equations is the model composed of? Does the model seem to be well posed?

At this point, take some time to explore the filter_flat_model object by typing 'filter_flat_model.<tab>' in the
Python shell to see what methods are available. You may also have a look in the Modelica compiler API.
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Chapter 10. Limitations
This page lists the current limitations of the JModelica.org platform. The development of the platform can be
followed at the Trac site, where future releases and associated features are planned. The JModelica.org platform
download page has links to compliance reports detailing the current MSL compliance.

• The Modelica compliance of the front-end is limited; the following features are currently not supported:

• The support for String variables and parameters is limited.

• Partial support for external functions; records are not supported as arguments or return values.

• The following built-in functions are not supported:

terminal()

• The following built-in functions are only supported in FMUs:

ceil(x) integer(x) reinit(x, expr)

div(x,y) mod(x,y) sample(start,interval)

edge(b) pre(y) semiLinear(...)

floor(x) rem(x,y) sign(v)

initial() delay(...) spatialDistribution(...)

• In the Optimica front-end the following constructs are not supported:

• Annotations for transcription information.

• The following limitations apply to FMUs compiled with JModelica.org:

• Source code FMUs can not be generated, only binary FMUs.

• Functions for setting and getting string variables do not work.

• The dependenciesKind attribute in the XML file for FMU 2.0 is not generated.

• Directional derivatives are known to have limitations in some cases.

• Asynchronous simulation is not supported.

• FMU states (set, get and serialize) are not supported.

• The following limitations apply to optimization using CasADi-based collocation with JModelica.org:

• Incomplete support for the Integer and Boolean types: To the extent that they are supported, they are treated
more or less like reals.

• No support for String and enumeration types.

• Attributes with any name can be set on any type of variable.

• The property of whether an optimization problem has free or fixed time horizon cannot be changed after
compilation.

• The following limitations apply to JMUs compiled with JModelica.org (note that JMUs are deprecated in
JModelica.org 1.15):

• The ODE interface requires the Modelica model to be written on explicit ODE form in order to work.

http://trac.jmodelica.org
http://www.jmodelica.org/binary
http://www.jmodelica.org/binary
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• Second order derivatives (Hessians) are not provided.

• The interface for interacting with JMUs does not comply with FMI specification.

• Discrete variables are not supported in JMUs.
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Appendix A. Compiler options
1. List of options that can be set in compiler

Table A.1. Compiler options

Option Option type /
Default value

Description

automatic_tearing boolean / true If enabled, then automatic tearing of equation systems is
performed.

c_compiler string / 'gcc' The C compiler to use to compile generated C code.

check_inactive_ contition-

als

boolean / false If enabled, check for errors in inactive conditional com-
ponents when compiling. When using check mode, this
is always done.

component_names_in_errors boolean / false If enabled, the compiler will include the name of the
component where the error was found, if applicable.

convert_free_dependent_

parameters_to_algebraics

boolean / true If enabled, then free dependent parameters are converted
to algebraic variables.

divide_by_vars_in_tearing boolean / false If enabled, a less restrictive strategy is used for solving
equations in the tearing algorithm. Specifically, division
by parameters and variables is permitted, by default no
such divisions are made during tearing.

enable_block_function_ ex-

traction

boolean / false Looks for function calls in blocks. If a function call in a
block doesn't depend on the block in question, it is ex-
tracted from the block.

external_constant_ evalua-

tion

integer / 5000 Time limit (ms) when evaluating constant calls to exter-
nal functions during compilation. 0 indicates no evalua-
tion. -1 indicates no time limit.

generate_block_jacobian boolean / false If enabled, then code for computing block Jacobians is
generated. If blocks are needed to compute ODE jaco-
bians they will be generated anyway

generate_dae_jacobian boolean / false If enabled, then code for computing DAE Jacobians are
generated.

generate_html_diagnostics boolean / false If enabled, model diagnostics are generated in HTML
format. This includes the flattened model, connection
sets, alias sets and BLT form.

generate_mof_files boolean / false If enabled, then flat model before and after transforma-
tions will be generated.

generate_ode_jacobian boolean / false If enabled, then code for computing ODE Jacobians are
generated.

generate_only_initial_ sys-

tem

boolean / false If enabled, then only the initial equation system will be
generated.

halt_on_warning boolean / false If enabled, compilation warnings will cause compilation
to abort.

index_reduction boolean / true If enabled, then index reduction is performed for high-in-
dex systems.

nonlinear_solver string / 'kin-
sol'

Decides which nonlinear equation solver to use. Alterna-
tives are 'kinsol or 'minpack'.
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Option Option type /
Default value

Description

relational_time_events boolean / true If enabled, then relational operators are allowed to gener-
ate time events.

state_initial_equations boolean / false If enabled, the compiler ignores initial equations in the
model and adds parameters for controlling intitial values
of states.Default is false.

state_start_values_fixed boolean / false If enabled, then initial equations are generated automat-
ically for differentiated variables even though the fixed
attribute is equal to fixed. Setting this option to true is,
however, often practical in optimization problems.

automatic_add_initial_

equations

boolean / true If enabled, then additional initial equations are added to
the model based equation matching. Initial equations are
added for states that are not matched to an equation.

cc_extra_flags string / ':O1' Optimization level for c-code compilation

cc_extra_flags_applies_to string / 'func-
tions'

Parts of c-code to compile with extra compiler flags
specified by ccompiler_extra_flags

common_subexp_elim boolean / true If enabled, the compiler performs a global analysis on
the equation system and extract identical function calls
into common equations.

diagnostics_limit integer / 500 This option specifies the equation system size at which
the compiler will start to reduce model diagnostics. This
option only affects diagnostic output that grows faster
than linear with the number of equations.

dynamic_states boolean / true If enabled, dynamic states will be calculated and generat-
ed.

eliminate_alias_parameters boolean / false If enabled, then alias parameters are eliminated from the
model.

eliminate_alias_variables boolean / true If enabled, then alias variables are eliminated from the
model.

enable_structural_ diagno-

sis

boolean / true If enabled, structural error diagnosis based on matching
of equations to variables is used.

enable_variable_scaling boolean / false If enabled, then the 'nominal' attribute will be used to
scale variables in the model.

equation_sorting boolean / true If enabled, then the equation system is separated into
minimal blocks that can be solved sequentially.

export_functions boolean / false Export used Modelica functions to generated C code in
a manner that is compatible with the external C interface
in the Modelica Language Specification.

export_functions_vba boolean / false Create VBA-compatible wrappers for exported func-
tions. Requires the option export_functions.

external_constant_

evaluation_max_proc

integer / 10 The maximum number of processes kept alive for eval-
uation of external functions during compilation. This
speeds up evaluation of functions using external objects
during compilation.If less than 1, no processes will be
kept alive, i.e. this feature is turned off.

function_incidence_ compu-

tation

string / 'none' Controls how matching algorithm computes incidences
for function call equations. Possible values: 'none',
'all'. With 'none' all outputs are assumed to depend
on all inputs. With 'all' the compiler analyses the func-
tion to determine dependencies.
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Option Option type /
Default value

Description

homotopy_type string / 'actu-
al'

Decides how homotopy expressions are interpreted dur-
ing compilation. Can be set to either 'simplified' or
'actual' which will compile the model using only the
simplified or actual expressions of the homotopy() oper-
ator.

ignore_within boolean / false If enabled, ignore within clauses both when reading in-
put files and when error-checking.

inline_functions string / 'triv-
ial'

Controlles what function calls are inlined. 'none' - no
function calls are inlined. 'trivial' - inline function
calls that will not increase the number of variables in the
system. 'all' - inline all function calls that are possible.

local_iteration_in_tearing string / 'off' This option controls whether equations can be solved lo-
cal in tearing. Possible options are: 'off', local itera-
tions are not used (default). 'annotation', only equa-
tions that are annotated are candidates. 'all', all equa-
tions are candidates.

max_n_proc integer / 4 The maximum number of processes used during c-code
compilation.

normalize_minimum_time_

problems

boolean / true If enabled, then minimum time optimal control prob-
lems encoded in Optimica are converted to fixed interval
problems by scaling of the derivative variables. Has no
effect for Modelica models.

propagate_derivatives boolean / true If enabled, the compiler will try to replace ordinary vari-
able references with derivative references. This is done
by first finding equations on the form x = der(y). If pos-
sible, uses of x will then be replaced with der(x).

variability_propagation boolean / true If enabled, the compiler performs a global analysis on
the equation system and reduces variables to constants
and parameters where applicable.

write_iteration_variables_

to_file

boolean / false If enabled, two text files containing one iteration variable
name per row is written to disk. The files contains the it-
eration variables for the DAE and the DAE initialization
system respectively. The files are output to the resource
directory of the FMU.

write_tearing_pairs_to_

file

boolean / false If enabled, two text files containing tearing pairs is writ-
ten to disk. The files contains the tearing pairs for the
DAE and the DAE initialization system respectively. The
files are output to the working directory.

algorithms_as_functions boolean / false If enabled, convert algorithm sections to function calls.

disable_smooth_events boolean / false If enabled, no events will be generated for smooth opera-
tor if order equals to zero.

event_indicator_scaling boolean / false If enabled, event indicators will be scaled with nominal
heuristics

generate_event_switches boolean / true If enabled, event generating expressions generates
switches in the c-code. Setting this option to false can
give unexpected results.

cs_rel_tol real / 1.0E-6 Tolerance for the adaptive solvers in the Co-Simulation
case.
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Option Option type /
Default value

Description

cs_solver integer / 0 Specifies the internal solver used in Co-Simulation. 0 -
CVode, 1 - Euler.

cs_step_size real / 0.001 Step-size for the fixed-step solvers in the Co-Simulation
case.

enforce_bounds boolean / true If enabled, min / max bounds on variables are enforced
in the equation blocks.

iteration_variable_scaling integer / 1 Scaling mode for the iteration variables in the equation
block solvers: 0 - no scaling, 1 - scaling based on nomi-
nals, 2 - utilize heuristic to guess nominal based on min,
max, start, etc.

log_level integer / 3 Log level for the runtime: 0 - none, 1 - fatal error, 2 - er-
ror, 3 - warning, 4 - info, 5 - verbose, 6 - debug.

nle_solver_default_tol real / 1.0E-10 Default tolerance for the equation block solver.

nle_solver_max_residual_

scaling_factor

real / 1.0E10 Maximal scaling factor used by automatic and hybrid
residual scaling algorithm.

nle_solver_min_residual_

scaling_factor

real / 1.0E-10 Minimal scaling factor used by automatic and hybrid
residual scaling algorithm.

rescale_after_singular_jac boolean / true If enabled, scaling will be updated after a singular ja-
cobian was detected (only active if automatic scaling is
used).

rescale_each_step boolean / false If enabled, scaling will be updated at every step (only ac-
tive if automatic scaling is used).

residual_equation_scaling integer / 1 Equations scaling mode in equation block solvers: 0 - no
scaling, 1 - automatic scaling, 2 - manual scaling, 3 - hy-
brid.

runtime_log_to_file boolean / false If enabled, log messages from the runtime are written di-
rectly to a file, besides passing it through the FMU inter-
face. The log file name is generated based on the FMU
name.

use_Brent_in_1d boolean / true If enabled, Brent search will be used to improve accura-
cy in solution of 1D non-linear equations.

events_default_tol real / 1.0E-10 Default tolerance for the event iterations.

events_tol_factor real / 1.0E-4 Tolerance safety factor for the event indicators. Used
when external solver specifies relative tolerance.

nle_brent_ignore_error boolean / false If enabled, the Brent solver will ignore convergence fail-
ures.

nle_solver_check_jac_cond boolean / false If enabled, the equation block solver computes and log
the jacobian condition number.

nle_solver_max_iter integer / 100 Maximum number of iterations for the equation block
solver.

nle_solver_min_tol real / 1.0E-12 Minimum tolerance for the equation block solver. Note
that, e.g. default Kinsol tolerance is machine precision
pwr 1/3, i.e. 1e-6.

nle_solver_regularization_

tolerance

real / -1.0 Tolerance for deciding when regularization should be ac-
tivated (i.e. when condition number > reg tol).

nle_solver_step_limit_ fac-

tor

real / 10.0 Factor limiting the step-size taken by the nonlinear
solver.
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Option Option type /
Default value

Description

nle_solver_tol_factor real / 1.0E-4 Tolerance safety factor for the equation block solver.
Used when external solver specifies relative tolerance.

nle_solver_use_last_

integrator_step

boolean / true If enabled, the intial guess for the iteration variables will
be set to the iteration variables from the last integrator
step.

nle_solver_use_nominals_as_

fallback

boolean / true If enabled, the nominal values will be used as initial
guess to the solver if initialization failed.

use_jacobian_equilibration boolean / false If enabled, jacobian equilibration will be utilized in the
equation block solvers to improve linear solver accuracy.

use_newton_for_brent boolean / true If enabled, a few Newton steps are computed to get a
better initial guess for Brent.

block_solver_experimental_

mode

integer / 0 Activates experimental features of equation block solvers

cs_experimental_mode integer / 0 Activates experimental features of CS ode solvers
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Appendix B. Release notes
1. Release notes for JModelica.org version 1.17

1.1. Highlights

For this release, all focus has been on Modelica/MSL compliance. All example models in the bundled MSL version
both check and simulate correctly with this release.

1.2. Compiler

1.2.1. Compliance

For this release, the Modelica Standard Library (MSL) version 3.2.1 build 4 is used with some additional hand-
picked revisions from trunk. All example models in this version of MSL simulate correctly with the JModelica.org
1.17 release. The results can be seen in the compliance reports for simulation and check on the JModelica.org
download site.

The trunk version of MSL has some additional example models compared to version 3.2.1. build 4. Compliance
reports for trunk MSL can be found on the JModelica.org public Jenkins, using trunk version of JModelica.org.

2. Release notes for JModelica.org version 1.16

2.1. Highlights

• Strong focus on Modelica/MSL compliance

• A number of improvements to the CasADi tool chain for optimization

2.2. Compiler

2.2.1. Compliance

For this release, there has been a strong emphasis on improving Modelica/MSL compliance. In several MSL
subpackages almost all example models now simulate with a correct result. Complete compliance reports can be
found on JModelica.org public Jenkins.

Especially, compliance improvements have been made in the following subpackages:

• Modelica.Mechanics.MultiBody

• Modelica.Blocks

• Modelica.Electrical.Analog

• Modelica.Electrical.Digital

• Modelica.Electrical.QuasiStationary

• Modelica.Electrical.Spice3

• Modelica.Magnetic

• Modelica.Mechanics.Rotational

• Modelica.Media

http://jmodelica.org/binary
http://jmodelica.org:8080
http://jmodelica.org:8080
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• Modelica.Thermal

• Modelica.Math

Further, the following operators are now supported:

• delay

• spatialDistribution

2.2.2. Support for dynamic state select

JModelica.org now does dynamic state selection, when necessary.

2.3. Optimization

Several additions and improvements in the CasADi tool chain for optimization have been made. Among the most
important are:

• Warm starting - descretize an optimization problem once, solve it multiple times with different parameters,
inputs, and initial guesses

• Classes for Model Predictive Control and Moving Horizon Estimation

• Back tracking from discretized problem to original. Trace back residuals, dual variables, and troublesome Ja-
cobian entries to the original model's equations and variables

• Possible to inspect equation scaling

• Checkpointing option to reduce discretization work

3. Release notes for JModelica.org version 1.15

3.1. Highlights

• FMI export supporting FMI 2.0

• FMI import supporting FMI 2.0 with PyFMI

• Improved MSL compliance

• Support for over-constrained initialization systems

• Dynamic optimization framework based on CasADi 2.0

• Improved numerical algorithms in FMU runtime

3.2. Compiler

3.2.1. Compliance

Many bug fixes in the compiler has resulted in greatly increased MSL support. Most or all of the tests and examples
for the following MSL sub-libraries now compile and simulate successfully (complete compliance information
for MSL can be found on the JModelica.org website, www.jmodelica.org):

• Blocks

• ComplexBlocks

• Electrical.Analog
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• Electrical.Machines

• Electrical.MultiPhase

• Electrical.QuasiStationary

• Electrical.Spice3

• Magnetic

• Mechanics.Rotational

• Mechanics.Translational

• Media

• Thermal

• Utilities

3.2.2. Support for over-constrained initialization systems

Automatic balancing of over-constrained initial systems is now implemented. This means that the compiler auto-
matically checks the consistency of the initial system and automatically removes redundant initial equations.

3.2.3. FMU 2.0 export

Support for export of FMUs according to the the recently released FMI 2.0 specification, both for Model Exchange
and Co-Simulation, has been added.

3.2.4. Improved numerical algorithms in FMU runtime

Numerous improvements has been made to the FMU runtime code. Specific improvements include solving one-
dimensional non-linear systems more robustly.

3.2.5. CasADi 2.0 support in Optimization

The CasADi based optimization tool chain has been updated to work with CasADi 1.9 and later (which is not back-
wards compatible with CasADi 1.8 and earlier). This allows exploiting new CasADi improvements such as bug
fixes, pluggable solvers, and improved documentation. The version of CasADi that is included in JModelica.org
is now 2.0.

3.3. Simulation

Support for the recently released FMI 2.0 specification has been included in PyFMI. FMUs following FMI 2.0
can now be loaded and simulated just as easily as FMUs following FMI 1.0.

4. Release notes for JModelica.org version 1.14

4.1. Highlights

• All models in the Modelica Standard Library, except Modelica.Fluid and those using operator delay() or function
pointers, pass error check

• FMI export supporting FMI 2.0RC2

• FMI import supporting FMI 2.0RC2 with PyFMI

• Improved error messages from the compiler
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• Various improvements and extensions to the CasADi-based optimization toolchain

4.2. Compiler

4.2.1. Compliance

A lot of work with compliance has resulted in that almost all models in the Modelica Standard Library now pass
error check. Exceptions are models in Modelica.Fluid and those using the operator delay() or function pointers.
In particular, the following improvements have been made:

• Support for arrays indexed with enumerations or Booleans

• Support for overloaded operators and the Complex type

• Improved error messages

• Support for structural parameters depending on external C/Fortran code

• Support for index reduction of optimization classes

• Improved modularization and extension points in the compiler

• Support for index reduction of optimization classes

• Many bug fixes to improve Modelica compliance

4.2.2. New compiler API

A new Java API for calling the compiler through a separate process has been added.

4.2.3. FMI 2.0 RC2 export

Support for export of FMUs that are compliant with FMI 2.0 RC2 has been added.

4.3. Simulation

Support for import and simulation of 2.0 RC2 FMUs with the Python package PyFMI.

4.4. Optimization

The following improvements have been made to the CasADi-based collocation algorithm:

• More efficient memory usage and code generation for function evaluations

• Interface added to WORHP, which serves as an alternative to IPOPT

• More general treatment of blocking factors. In particular it is now possible to penalize and constrain the dis-
continuity jumps.

5. Release notes for JModelica.org version 1.13

5.1. Highlights

• FMI 2.0 Export, according to RC1

• New CasADi tool chain for optimization

• In-lined switches

• Improved compliance
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5.2. Compilers

5.2.1. FMI 2.0 RC1 export

FMI 2.0 export according to RC1 is supported. There are some limitations, summarized in the list below.

• Support for dependencies but not for dependenciesKind in the XML tag ModelStructure

• Support for directional derivative but known to have limitations in some cases

• No support for strings and running asynchronuously

• No support for FMU states (set, get and serialize)

5.2.2. Compliance

• Improved support for expandable connectors

• Improved support for unknown array sizes in functions

• Improved handling of the state select attribute

• Many bug fixes

5.3. Simulation

5.3.1. In-lined switches

In-lined switches have been introduced, which gives a more robust initialization and simulation of systems with
discrete parts.

5.4. Optimization

5.4.1. New CasADi tool chain

• Support for more Modelica features than previous CasADi-based tool chain

• User defined functions in models

• No support for control flow

• Flat model is exposed in Python in symbolic form using CasADi, and can be inspected and manipulated

• Support for a variety of collocation options

6. Release notes for JModelica.org version 1.12

6.1. Highlights

• Greatly improved support for Modelica.Mechanics.MultiBody

• Support for expandable connectors

• Support for when statements

• Support for event generating built-in functions

• Support for overconstrained connection graphs

• Support for reinit() operator
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6.2. Compilers

The following compliance improvements have been made:

• Improved support for algorithms, including when statements.

• Improved support for if equations.

• Improved handling of discrete constructs.

• Improved handling of attributes in alias sets.

• Improved index reduction algorithm.

• Added support for expandable connectors and for overconstrained connection systems.

• Added support for automatic differentiation of functions with smoothOrder annotation.

• Added support for String operations.

• Many bug fixes.

Added check mode, where a class is checked for errors to see if it can be used in a simulation class.

Class annotations are now only allowed as the last element of the class, as per the Modelica 3.2 specification.

6.3. Simulation

The following simulation improvements have been made:

• Improved the simulation run-time with support for the improvements made in the compiler

• Improved the robustness when solving linear and nonlinear blocks.

JModelica.org now simulates the example models from the MultiBody package in MSL with the exception of the
few models that require dynamic state selection.

6.4. Contributors

Bengt-Arne Andersson

Christian Andersson

Tove Bergdahl

Emil Fredriksson

Magnus Gäfvert

Toivo Henningsson

Jonathan Kämpe

Björn Lennernäs

Fredrik Magnusson

Jesper Mattsson

Iakov Nakhimovski

Jon Sten
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Johan Ylikiiskilä

Johan Åkesson

6.4.1. Previous contributors

Sofia Gedda

Petter Lindgren

John Lindskog

Tobias Mattsson

Lennart Moraeus

Philip Nilsson

Teo Nilsson

Patrik Meijer

Kristina Olsson

Roberto Parrotto

Jens Rantil

Philip Reuterswärd

Jonas Rosenqvist

7. Release notes for JModelica.org version 1.11

7.1. Highlights

• Runtime logging

• Support for ModelicaError and assert

• Additional method in block solver

• Support for ModelicaStandardTables in MSL

• Improved compliance

7.2. Compilers

The following compliance improvements have been made:

• Most of the previously unsupported operators are now supported for FMUs

• Support for assert clauses

• String operations are now supported (this is useful for asserts, even though String variables are not supported)

• Support for vectorization for built-in functions

• Inlining of simple functions is now activated by default

• Several bug fixes
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7.3. Simulation

7.3.1. Runtime logging

The runtime logging has been much improved with a new debugging and analysis framework. This enables de-
bugging of convergence issues in non-linear systems of equations.

7.3.2. Support for ModelicaError and assert

The compiler and runtime has support for ModelicaError and assert clauses. If an assert clause fails or a Modeli-
caError is called, the integrator will reject the current step.

7.4. Contributors

Bengt-Arne Andersson

Christian Andersson

Tove Bergdahl

Emil Fredriksson

Magnus Gäfvert

Toivo Henningsson

Jonathan Kämpe

Fredrik Magnusson

Jesper Mattsson

Iakov Nakhimovski

Jon Sten

Johan Ylikiiskilä

Johan Åkesson

7.4.1. Previous contributors

Sofia Gedda

Björn Lennernäs

Petter Lindgren

John Lindskog

Tobias Mattsson

Lennart Moraeus

Philip Nilsson

Teo Nilsson

Patrik Meijer

Kristina Olsson

Roberto Parrotto
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Jens Rantil

Philip Reuterswärd

Jonas Rosenqvist

8. Release notes for JModelica.org version 1.10

8.1. Highlights

• Export of FMUs for Co-Simulation

• Import of FMU 2.0b4 in PyFMI

• Improved log format for FMUs

• Improved variable scaling in the CasADi collocation

• Improved handling of measurement data in the CasADi collocation

• Improved logging from compilers

• Improved Modelica compliance

8.2. Compilers

The following compliance improvements have been made:

• The following operators are now supported:

• smooth()

• skew(x)

• scalar(A)

• vector(A)

• matrix(A)

• diagonal(v)

• Improved handling of unmatched HGT. All unmatched iteration variables and residual equations are now paired
and treated the same way as regular HGT pairs.

• Improvements have been made to analytical jacobians. Notably full support for functions and bug fixes.

Also many bug fixes and performance improvements have been made.

8.2.1. Export of FMUs for Co-Simulation

Export of FMUs for Co-Simulation version 1.0 is now supported. Specifying a co-simulation FMU instead of a
model exchange FMU is done via an option to the compile_fmu method. The internal solver in the co-simulation
FMU is CVode from the Sundials suite and there is also an explicit Euler method. The choice of the solver can
be changed via a parameter in the FMU.

8.3. Python

8.3.1. Improved result data access

Modified handling of simulation and optimization results to facilitate post processing of results such as plotting.
Accessing variables and parameters from results will always return a vector of size equal to the time vector. Also,
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the base result class (JMResultBase) has two new functions, initial and final, which will always return initial
and final value of the simulation/optimization as scalar values. See both Chapter 5, Simulation of FMUs and
Chapter 6, Optimization for plotting code examples.

8.3.2. Improved error handling

Improved error handling of compiler problems (exceptions, errors and warnings). Problems are now given in the
same way as regardless if JPype or separate process is used when compiling. Additionally errors and warning
are now returned as python objects to facilitate easier post processing of compiler problems. It is also possible to
retrieve warnings from the return result of compile_fmu, compile_jmu and compile_fmux, e.g.:

r = compile_fmu('Test', 'test.mo')
print r.warnings

8.3.3. Parsing of FMU log files

FMUs and JMUs created with JModelica.org now produce logs in a structured XML format, which can be either
parsed using tools in the Python module pyjmi.log or using general purpose XML tools. See Section 5.2, “Run-
time logging” for code examples.

8.4. Simulation

8.4.1. Support for FMU version 2.0b4

Added support for simulation of models following the FMI version 2.0 beta 4, both model exchange FMUs and
co-simulation FMUs.

8.4.2. Result filter

Added an option to the simulation method for filtering which variables are stored. This is especially useful in case
of large models with many variables as just selecting a subset of variables to store can speed up the simulation.
Additionally there is now the option to store the result directly in the memory instead of writing the result to file.

8.4.3. Improved solver support

Improvements on the solvers has been made resulting in that simulation of Model Exchange FMUs can now be
performed by a number of solvers. See the simulation options for the supported solvers. For example there is now
an Radau5 solver.

8.5. Optimization

8.5.1. Improved variable scaling

The variable scaling performed based on nominal trajectories for the CasADi collocation has been improved and
can now be set individually for each variable. It also has a more robust default behavior.

8.5.2. Improved handling of measurement data

The old class ParameterEstimationData for the CasADi collocation has been replaced by MeasurementData.
The new class can also be used for optimal control, and not only parameter estimation, and also offers additional
strategies in the handling of the data.

8.6. Contributors

Bengt-Arne Andersson

Christian Andersson

Tove Bergdahl
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Emil Fredriksson

Magnus Gäfvert

Toivo Henningsson

Jonathan Kämpe

John Lindskog

Fredrik Magnusson

Jesper Mattsson

Iakov Nakhimovski

Teo Nilsson

Jon Sten

Johan Ylikiiskilä

Johan Åkesson

8.6.1. Previous contributors

Sofia Gedda

Björn Lennernäs

Petter Lindgren

Tobias Mattsson

Lennart Moraeus

Philip Nilsson

Patrik Meijer

Kristina Olsson

Roberto Parrotto

Jens Rantil

Philip Reuterswärd

Jonas Rosenqvist

9. Release notes for JModelica.org version 1.9.1
This release contains a bug fix which eliminates a dependency on external libraries in FMUs. Apart from this bug
fix, the release is identical to JModelica.org version 1.9.

10. Release notes for JModelica.org version 1.9

10.1. Highlights

• Improved function inlining
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• Manual selection of iteration variables in tearing algorithm - Hand Guided Tearing (HGT)

• Support for external objects

• Simulation of Co-simulation FMUs in Python

• Improved compiler execution speed

• Improved compiler memory efficiency

• Support for MSL CombiTables

• Improvements to the CasADi-based collocation optimization algorithm, including support for non-fixed time
horizons and supplying nominal trajectories for scaling purposes

• Updated to MSL 3.2

10.2. Compilers

10.2.1. Improved Modelica compliance

The following compliance improvements have been made:

• Support for external objects (classes extending the predefined partial class ExternalObject)

• Support for the same component being added from more than one extends clause.

• Many bug fixes, notably concerning inheritance and redeclares.

10.2.2. Support for MSL CombiTables

There is now support for MSL CombiTables, both 1D and 2D. The table can be either read from file or explicitly
supplied as a parameter matrix.

10.2.3. Support for hand guided tearing

The tearing algorithm in the compiler can now be influenced by user selected residuals and iteration variables,
in order to make such selections explicit, e.g., to exploit physical insight in the choice of iteration variables. The
selections are made by means of vendor specific annotations and can be done at the component level and at the
system level.

10.2.4. Improved function inlining

Improved support for inlining of functions. Notably a new in-lining mode has been added, where functions that can
be inlined without introducing additional variables to the model. The inlining algorithm has also been expanded
to handle more situations.

10.2.5. Memory and execution time improvements in the compiler

The compilation times for large simulation models has been reduced by more than two orders of magnitudes. Also,
the memory required to compile large models has been decreased by two orders of magnitude. As a consequence,
larger models up to 100.000 equations can be comfortably compiled on a standard computer.

10.3. Python

10.3.1. Compile in separate process

The possibility to compile in a separate process from the Python interface has been added. This is enabled with
an argument to compile_fmu, compile_jmu or compile_fmux which is False by default. It is also possible to
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pass arguments to the JVM. This enables, among other things, users on 64 bit Windows to use a 64 bit JRE (Java
Runtime Environment) for compiling a model.

10.4. Simulation

10.4.1. Simulation of co-simulation FMUs

Support for simulation of co-simulation FMUs following the FMI version 1.0 has been implemented and follows
the same work-flow as for loading and simulating an model exchange FMU, i.e:

from pyfmi import load_fmu
model = load_fmu("CS_Model.fmu")
res = model.simulate(final_time=1.0)
...

10.5. Optimization

10.5.1. Improvements to CasADi-based collocation algorithm

The following features have been added to the CasADi-based collocation algorithm

• Support for non-fixed time horizons, allowing the formulation of, for example, minimum-time problems

• Possibility to supply nominal trajectories based on simulation results, which are used to compute (possibly time-
variant) scaling factors. This makes it possible to conveniently obtain good scaling for all variables in a model.

• Possibility to use more advanced interpolation of optimized inputs based on collocation polynomials, instead
of linear interpolation, providing higher accuracy when simulating a system using optimized inputs

• Setting of nominal attributes from Python in loaded models
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11. Release notes for JModelica.org version 1.8.1
This release is identical to JModelica.org version 1.8 apart from one important bug fix. The issue that has been
fixed concerns the scaling of start attributes in JMUs.

12. Release notes for JModelica.org version 1.8

12.1. Highlights

• Improved Modelica compliance of the compiler front-end, including support for if equations and inner/outer
declarations

• Optimized performance and memory utilization of the compiler front-end

• A new state selection algorithm with support for user defined state selections

• A new function inlining algorithm for conversion of algorithmic functions into equations

• Improvements to the CasADi-based collocation optimization algorithm, including support for terminal con-
straints

12.2. Compilers

12.2.1. Improved Modelica compliance

The following compliance improvements have been made:

• Support for if equations

• Support for inner/outer declarations

• Expressions in der() operator

• Function call equations in when equations

• Limited support for String parameters. String parameters are now supported in the compiler front-end, although
they are discarded in the code generation.

Also, many bug fixes and performance improvements in the compiler are included in this release.

12.2.2. Function inlining

There is a new function inlining algorithm for conversion of algorithmic functions into equations.



Release notes

112

12.2.3. New state selection algorithm

The new state selection algorithm takes user input (stateSelect attribute) into account and implements heuristics
to select states that avoids, if possible, iteration of non-linear systems of equations.

12.3. Python

12.3.1. Simplified compiling with libraries

The compiler now support adding extra libraries as files, which makes it easier to compile a model using a struc-
tured library not in the MODELICAPATH. Both Python functions compile_jmu and compile_fmu support this.
For example, compiling A.B.Example from a library A in directory LibDir with compile_fmu, this can now be
written as:

compile_fmu('A.B.Example', 'LibDir/A')

12.4. Optimization

12.4.1. Improvements to CasADi-based collocation algorithm

The CasADi-based collocation algorithm has been improved with new features

• Support for point constraints

• Setting of parameter values from Python in loaded models

• Setting of min/max attributes from Python in loaded models
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13. Release notes for JModelica.org version 1.7

13.1. Highlights

• Improved support for hybrid systems, including friction models and ideal diodes

• Support for tearing of equation systems

• Support for external Fortran functions

• Support for function inlining

• Reorganization of the Python code: a new stand-alone package, PyFMI, provided

• A novel dynamic optimization algorithm implemented in Python based on collocation and CasADi is provided

13.2. Compilers

13.2.1. Support for mixed systems of equations

Mixed systems of equations, i.e., equation systems containing both real and integer/boolean variables are support-
ed. Such systems commonly occurs in, e.g., friction models and diode models.

13.2.2. Support for tearing

Tearing is a technique to improve simulation efficiency by reducing the number of iteration variables when solving
systems of equations. A tearing algorithm relying on graph-theoretical methods has been implemented, which is
used to generate more efficient simulation code.

13.2.3. Improved Modelica compliance

With added support for external Fortran function and many bug fixes, the compiler now handles many models
that previously would not compile.

13.2.4. Function inlining

Calls to Modelica functions (i.e. not external functions) in equations can now be inlined, by adding the equivalent
equations and temporary variables. This allows some transformations that are specific to equations to be performed
on the function calls as well. It also allows compilation targets that does not handle functions, such as CasADi,
to be used with models containing functions. Currently, only functions that only contains assignment statements
are supported. Such function are common in e.g. media libraries.

13.3. Python

13.3.1. New package structure

The Python code has been refactored into three packages:

• PyFMI A package for working with FMUs, perform simulations, interact with the model, plotting of result data
and more. This package can be used stand-alone, see www.pyfmi.org.

http://www.pyfmi.org
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• PyJMI A package for working with JMUs, solve optimization problems, perform simulations, model interaction
and more.

• PyModelica A package containing Modelica and Optimica compilers.

13.3.2. Support for shared libraries in FMUs

The FMU import and export now supports dependencies on extra shared libraries. For the export, the shared
libraries are placed in the same folder as the model binary. Similarly, any shared libraries packed with the model
binary will be found when importing the FMU.

13.4. Simulation

13.4.1. Simulation of hybrid systems

The improved compiler support for mixed systems of equations is matched by extensions to the JModelica.org
simulation runtime system, enabling simulation of more sophisticated hybrid models. Amongst others, the classic
Modelica.Mechanics.Rotational.Examples.CoupledClutches benchmark model can be now simulated.

13.5. Optimization

13.5.1. A novel CasADi-based collocation algorithm

A novel CasADi-based collocation algorithm is provided. The new algorithm is implemented in Python and relies
on the CasADi package for computation of derivatives and interaction with IPOPT. The new algorithm is an
order of magnitude faster than the existing collocation algorithm on many problems, and provides significantly
improved flexibility.
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14. Release notes for JModelica.org version 1.6

14.1. Highlights

• A new derivative free parameter optimization algorithm for FMUs

• A new pseudo spectral optimization algorithm

• Index reduction to handle high-index DAEs

• A new graphical user interface for plotting of simulation and optimization results

• Icon rendering and many improvements in the Eclipse Modelica plug-in

14.2. Compilers

14.2.1. Index reduction

High-index systems, commonly occurring in mechanical systems, are supported in JModelica.org 1.6. The imple-
mentation relies on Pantelides' algorithm and the dummy derivative selection algorithm.

14.2.2. Modelica compliance

The following improvements to the Modelica compliance of the editors has been made:

• Partial support for the smooth() operator (not used in event handling, otherwise supported).

• Support for global name lookup (i.e. names starting with a dot are looked up from the top scope).

14.3. Python

14.3.1. Graphical user interface for visualization of simulation and optimization
results

A new graphical interface for displaying simulation and / or optimization results have been implemented. The
interface also supports results generated from Dymola, both binary and textual.

14.3.2. Simulation with function inputs

The Python simulation interface has been improved so that top level inputs in FMUs can be driven by Python
functions in addition to tables.

14.3.3. Compilation of XML models

A new convenience function for compilation of Modelica and Optimica models into XML, including equations,
has been added.

14.3.4. Python version upgrade

The Python package has been updated to Python 2.7.
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14.4. Optimization

14.4.1. Derivative- free optimization of FMUs

The derivative-free optimization algorithm in JModelica.org enables users to calibrate dynamic models compliant
with the Functional Mock-up Interface standard (FMUs) using measurement data. The new functionality offers
flexible and easy to use Python functions for model calibration and relies on the FMU simulation capabilities of
JModelica.org. FMU models generated by JModelica.org or other FMI-compliant tools such as AMESim, Dymola,
or SimulationX can be calibrated.

14.4.2. Pseudo spectral methods for dynamic optimization

Pseudo spectral optimization methods, based on collocation, are now available. The algorithms relies on CasADi
for evaluation of derivatives, first and second order, and IPOPT is used to solve the resulting non-linear program.
Optimization of ordinary differential equations and multi-phase problems are supported. The algorithm has been
developed in collaboration with Mitsubishi Electric Research Lab, Boston, USA, where it has been used to solve
satellite navigation problems.

14.5. Eclipse Modelica plugin

The JModelica.org Eclipse plugin has improved to the point where we are ready to do a release. Version 0.4.0 is
now available from the JModelica.org website.

Changes from the versions that has been available from the SVN repository are mainly stability and performance
improvements. To this end, some features have been disabled (auto-complete and format file/region). There are
also a few new features, most notably support for rendering of class icons.
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15. Release notes for JModelica.org version 1.5

15.1. Highlights

• FMU export

• Improvements in compiler front-end

• Equation sorting and BLT

• Symbolic solution of simple equations

• Improved simulation support for hybrid and sampled systems

• Improved initialization with Kinsol and SuperLU

• Improved support for external functions.

15.2. Compilers

15.2.1. When clauses

When clauses are supported in the Modelica compiler.

15.2.2. Equation sorting

Equations are sorted using Tarjan's algorithm and the resulting BLT representation is used in the C code generation.
Also, trivial equations are solved and converted into assignment statements.

15.2.3. Connections

Added support for connecting arrays of components and for connect equations in for clauses.

15.2.4. Eclipse IDE

The JModelica plugin for Eclipse has been updated to be more stable and to syntax highlight Modelica 3.2 code
properly.

15.2.5. Miscellaneous

Fixed several compiler bugs.

15.3. Simulation

15.3.1. FMU export

JModelica.org 1.5 supports export of Functional Mock-up Interface (FMI) compliant models (FMUs). The export-
ed models follows the FMI standard and may be imported in other FMI compilant simulation tools, or they may be
simulated using JModelica.org using the FMU import feature introduced in version 1.4. The exported FMUs con-
tain an XML file, containing model meta data such as variable names, a DLL, containing the compiled C functions
specified by FMI, and additional files containing the flattened Modelica model useful for debugging purposes.

15.3.2. Simulation of ODEs

A causalization approach to simulation of Modelica models has been implemented. This means that the DAE
resulting from flattening is transformed into an ODE, and ODE solvers can be used to simulate the model. This
feature is a requirement for export of FMUs. This strategy has required the symbolic algorithms and the C code
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generation module to be adapted as described above. In addition, the simulation runtime system has been extended
to allow for trivial equations converted into assignments and for implicit systems of equations. The latter are solved
using the Newton solver KINSOL, modified to support regularization to handle singular Jacobian matrices.

15.3.3. Simulation of hybrid and sampled systems

When clauses are now supported, as well as the sample operator. Accordingly, some classes of hybrid systems
may be simulated as well as sampled control systems. In addition, variables of type Integer and Boolean are also
supported.

15.4. Initialization of DAEs

A novel initialization algorithm based on the Newton solver KINSOL from the SUNDIALS suite is introduced.
The KINSOL solver has been improved by adding support for Jacobian regularization in order to handle singular
Jacobians and by interfacing the sparse linear solver SuperLU in order to more efficiently handle large scale
systems.

15.5. Optimization

Curtis Powell Reid seeding has been implemented to speed up computation of sparse Jacobians. When solving
large optimization problems, this can give a speed-up factor of up to 10-15.
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16. Release notes for JModelica.org version 1.4

16.1. Highlights

• Improved Python user interaction functions

• Improvements in compiler front-end

• Support for sensitivity analysis of DAEs using Sundials

• Introduced new model concept, jmu-models.

• Support for enumerations
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16.2. Compilers

16.2.1. Enumerations

Added support for enumerations to the same extent as Integers, except that arrays indexed with enumerations are
not supported.

16.2.2. Miscellaneous

Fixed many compiler bugs, especially concerning complex class structures.

16.2.3. Improved reporting of structural singularities

Systems which are structurally singular now generates an error message. Also, high-index systems, which are not
yet supported, are reported as structurally singular systems.

16.2.4. Automatic addition of initial equations

A matching algorithm is used to automatically add initial equations to obtain a balanced DAE initialization system.
If too few initial equations are given, the algorithm will set the fixed attribute to true for some of the differentiated
variables in the model.

16.3. Python interface

16.3.1. Models

• Introduced new model class jmodelica.jmi.JMUModel which replaced jmodelica.jmi.JMIModel.

• jmodelica.fmi.FMIModel changed name to jmodelica.fmi.FMUModel.

• jmodelica.jmi.JMIModel.get_value and set_value have changed to jmodelica.jmi.JMUModel.get and
set, which have also been introduced for jmodelica.fmi.FMUModel

16.3.2. Compiling

• Introduced JMU files which are compressed files containing files created during compilation.

• Introduced new method jmodelica.jmi.compile_jmu which compiles Modelica or Optimica models to JMUs.
These JMUs are then used when creating a JMUModel which loads the model in a Python object.

• Removed possibility to compile models directly in high-level functions, initialize, simulate and optimize. In-
stead compile_jmu should be used.

16.3.3. initialize, simulate and optimize

• initialize, simulate and optimize are no longer functions under jmodelica but methods of
jmodelica.jmi.JMUModel and jmodelica.fmi.FMUModel (initialize and simulate only).

• New objects for options to initialize, simulate and optimize have been introduced. The alg_args and
solver_args parameters have therefore been removed. The options from alg_args and solver_args can now
be found in the options object. Each algorithm for initialize, simulate and optimize have their own options
object.

16.3.4. Result object

Added convenience methods for getting variable trajectories from the result. The result trajectories are now ac-
cessed as objects in a dictionary:

res = model.simulate()
yres = res['y']
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16.4. Simulation

16.4.1. Input trajectories

Changed how the input trajectories are handled. The trajectories now have to be connected to an input variable
as a 2-tuple. The first argument should be a list of variables or a single variable. The second argument should be
a data matrix with the first column as the time vector and the following columns corresponding to the variables
in the first argument.

16.4.2. Sensitivity calculations

Sensitivity calculations have been implemented when using the solver IDA from the Assimulo package. The
sensitivity calculations are activated with the the option:

opts['IDA_options']['sensitivity'] = True

which calculates sensitivities of the states with respect to the free parameters.

16.4.3. Write scaled simulation result to file

In some cases, it is useful to be able to write the scaled simulation result when the option
enable_variable_scaling is set to true. Specifically, this supports debugging to detect if additional variables
should have a nominal value. This feature is available also for initialization and optimization.

16.5. Contributors

Christian Andersson

Tove Bergdahl

Magnus Gäfvert

Jesper Mattsson

Johan Ylikiiskilä

Johan Åkesson

16.5.1. Previous contributors

Philip Nilsson

Roberto Parrotto

Jens Rantil

Philip Reuterswärd

17. Release notes for JModelica.org version 1.3

17.1. Highlights

• Functional Mockup Interface (FMI) simulation support

• Support for minimum time problems

• Improved support for redeclare/replaceable in the compiler frontend

• Limited support for external functions

• Support for stream connections (with up to two connectors in a connection)
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17.2. Compilers

17.2.1. The Modelica compiler

17.2.1.1. Arrays

Slice operations are now supported.

Array support is now nearly complete. The exceptions are:

• Functions with array inputs with sizes declared as ':' - only basic support.

• A few array-related function-like operators are not supported.

• Connect clauses does not handle arrays of connectors properly.

17.2.1.2. Redecare

Redeclares as class elements are now supported.

17.2.1.3. Conditional components

Conditional components are now supported.

17.2.1.4. Constants and parameters

Function calls can now be used as binding expressions for parameters and constants. The handling of Integer,
Boolean and record type parameters is also improved.

17.2.1.5. External functions

• Basic support for external functions written in C.

• Annotations for libraries, includes, library directories and include directories supported.

• Platform directories supported.

• Can not be used together with CppAD.

• Arrays as arguments are not yet supported. Functions in Modelica_utilies are also not supported.

17.2.1.6. Stream connectors

Stream connectors, including the operators inStream and actualStream and connections with up to two stream
connectors are supported.

17.2.1.7. Miscellaneous

The error checking has been improved, eliminating many erroneous error messages for correct Modelica code.

The memory and time usage for the compiler has been greatly reduced for medium and large models, especially
for complex class structures.

17.2.2. The Optimica compiler

All support mentioned for the Modelica compiler applies to the Optimica compiler as well.

17.2.2.1. New class attribute objectiveIntegrand

Support for the objectiveIntegrand class attribute. In order to encode Lagrange cost functions of the type
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the Optimica class attribute objectiveIntegrand is supported by the Optimica compiler. The expression L may
be utilized by optimization algorithms providing dedicated support for Lagrange cost functions.

17.2.2.2. Support for minimum time problems

Optimization problems with free initial and terminal times can now be solved by setting the free attribute of the
class attributes startTime and finalTime to true. The Optimica compiler automatically translates the problem into
a fixed horizon problems with free parameters for the start en terminal times, which in turn are used to rescale
the time of the problem.

Using this method, no changes are required to the optimization algorithm, since a fixed horizon problem is solved.

17.3. JModelica.org Model Interface (JMI)

17.3.1. The collocation optimization algorithm

17.3.1.1. Dependent parameters

Support for free dependent parameters in the collocation optimization algorithm is now implemented. In models
containing parameter declarations such as:

parameter Real p1(free=true);
parameter Real p2 = p1;

where the parameter p2 needs to be considered as being free in the optimization problem, with the additional
equality constraint:

p1 = p2

included in the problem.

17.3.1.2. Support for Lagrange cost functions

The new Optimica class attribute objectiveIntegrand, see above, is supported by the collocation optimization al-
gorithm. The integral cost is approximated by a Radau quadrature formula.

17.4. Assimulo

Support for simulation of an FMU (see below) using Assimulo. Simulation of an FMU can either be done by using
the high-level method *simulate* or creating a model from the FMIModel class together with a problem class,
FMIODE which is then passed to CVode.

17.5. FMI compliance

Improved support for the Functional Mockup Interface (FMI) standard. Support for importing an FMI model,
FMU (Functional Mockup Unit). The import consist of loading the FMU into Python and connecting the models
C execution interface to Python. Note, strings are not currently supported.

Imported FMUs can be simulated using the Assimulo package.

17.6. XML model export

17.6.1. noEvent operator

Support for the built-in operator noEvent has been implemented.

17.6.2. static attribute

Support for the Optimica attribute static has been implemented.
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17.7. Python integration

17.7.1. High-level functions

17.7.1.1. Model files

Passing more than one model file to high-level functions supported.

17.7.1.2. New result object

A result object is used as return argument for all algorithms. The result object for each algorithm extends the base
class ResultBase and will therefore (at least) contain: the model object, the result file name, the solver used and
the result data object.

17.7.2. File I/O

Rewriting xmlparser.py has improved performance when writing simulation result data to file considerably.
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18. Release notes for JModelica.org version 1.2

18.1. Highlights

• Vectors and user defined functions are supported by the Modelica and Optimica compilers

• New Python functions for easy initialization, simulation and optimization

• A new Python simulation package, Assimulo, has been integrated to provide increased flexibility and perfor-
mance

18.2. Compilers

18.2.1. The Modelica compiler

18.2.1.1. Arrays

Arrays are now almost fully supported. This includes all arithmetic operations and use of arrays in all places
allowed in the language specification. The only exception is slice operations, that are only supported for the last
component in an access.
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18.2.1.2. Function-like operators

Most function-like operators are now supported. The following list contains the function-like operators that are
*not* supported:

• sign(v)

• Integer(e)

• String(...)

• div(x,y)

• mod(x,y)

• rem(x,y)

• ceil(x)

• floor(x)

• integer(x)

• delay(...)

• cardinality()

• semiLinear()

• Subtask.decouple(v)

• initial()

• terminal()

• smooth(p, expr)

• sample(start, interval)

• pre(y)

• edge(b)

• reinit(x, expr)

• scalar(A)

• vector(A)

• matrix(A)

• diagonal(v)

• product(...)

• outerProduct(v1, v2)

• symmetric(A)

• skew(x)

18.2.1.3. Functions and algorithms

Both algorithms and pure Modelica functions are supported, with a few exceptions:
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• Use of control structures (if, for, etc.) with test or loop expressions with variability that is higher than parameter
is not supported when compiling for CppAD.

• Indexes to arrays of records with variability that is higher than parameter is not supported when compiling for
CppAD.

• Support for inputs to functions with one or more dimensions declared with ":" is only partial.

External functions are not supported.

18.2.1.4. Miscellaneous

• Record constructors are now supported.

• Limited support for constructs generating events. If expressions are supported.

• The noEvent operator is supported.

• The error checking has been expanded to cover more errors.

• Modelica compliance errors are reported for legal but unsupported language constructs.

18.2.2. The Optimica Compiler

All support mentioned for the Modelica compiler applies to the Optimica compiler as well.

18.3. The JModelica.org Model Interface (JMI)

18.3.1. General

18.3.1.1. Automatic scaling based on the nominal attribute

The Modelica attribute nominal can be used to scale variables. This is particularly important when solv-
ing optimization problems where poorly scaled systems may result in lack of convergence. Automatic scal-
ing is turned off by default since it introduces a slight computational overhead: setting the compiler option
enable_variable_scaling to true enables this feature.

18.3.1.2. Support for event indicator functions

Support for event indicator functions and switching functions are now provided. These features are used by the
new simulation package Assimulo to simulate systems with events. Notice that limitations in the compiler front-
end applies, see above.

18.3.1.3. Integer and boolean parameters

Support for event indicator functions and switching functions are now provided. These features are used by the
new simulation package Assimulo to simulate systems with events. Notice that limitations in the compiler front-
end applies, see above.

18.3.1.4. Linearization

A function for linearization of DAE models is provided. The linearized models are computed using automatic
differentiation which gives results at machine precision. Also, for index-1 systems, linearized DAEs can be con-
verted into linear ODE form suitable for e.g., control design.

18.4. The collocation optimization algorithm

18.4.1. Piecewise constant control signals

In control applications, in particular model predictive control, it is common to assume piecewise constant control
variables, sometimes referred to as blocking factors. Blocking factors are now supported by the collocation-based
optimization algorithm, see jmodelica.examples.cstr_mpc for an example.
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18.4.2. Free initial conditions allowed

The restriction that all state initial conditions should be fixed has been relaxed in the optimization algorithm. This
enables more flexible formulation of optimization problems.

18.4.3. Dens output of optimization result

Functions for retrieving the optimization result from the collocation-based algorithm in a dense format are now
provided. Two options are available: either a user defined mesh is provided or the result is given for a user defined
number of points inside each finite element. Interpolation of the collocation polynomials are used to obtain the
dense output.

18.5. New simulation package: Assimulo

The simulation based on pySundials have been removed and replaced by the Assimulo package which is also
using the Sundials solvers. The main difference between the two is that Assimulo is using Cython to connect to
Sundials. This has substantially improved the simulation speed. For more info regarding Assimulo and its features,
see: http://www.jmodelica.org/assimulo.

18.6. FMI compliance

The Functional Mockup Interface (FMI) standard is partially supported. FMI compliant model meta data XML
document can be exported, support for the FMI C model execution interface is not yet supported.

18.7. XML model export

Models are now exported in XML format. The XML documents contain information on the set of variables, the
equations, the user defined functions and for the Optimica´s optimization problems definition of the flattened
model. Documents can be validated by a schema designed as an extension of the FMI XML schema.

18.8. Python integration

• The order of the non-named arguments for the ModelicaCompiler and OptimicaCompiler function
compile_model has changed. In previous versions the arguments came in the order (model_file_name,
model_class_name, target = "model") and is now (model_class_name, model_file_name, target
= "model").

• The functions setparameter and getparameter in jmi.Model have been removed. Instead the functions
set_value and get_value (also in jmi.Model) should be used.

• Caching has been implemented in the xmlparser module to improve execution time for working with jmi.Model
objects, which should be noticeable for large models.

18.8.1. New high-level functions for optimization and simulation

New high-level functions for problem initialization, optimization and simulation have been added which wrap the
compilation of a model, creation of a model object, setup and running of an initialization/optimization/simulation
and returning of a result in one function call. For each function there is an algorithm implemented which will be
used by default but there is also the possibility to add custom algorithms. All examples in the example package
have been updated to use the high-level functions.
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Appendix C. Initialization and
simulation of JMUs (Deprecated in
JModelica.org 1.15)
1. Introduction

There are two different means to simulate a Modelica model in JModelica.org: either as a Functional Mock-Up
Unit (FMU) or as a JModelica.org Model Unit (JMU). In the former case, the model is converted into an Ordinary
Differential Equation (ODE), whereas in the latter case, the model is simulated as a Differential Algebraic Equation
(DAE). The default, and recommended, means to simulate models is to use FMUs, since this approach provides
better performance, a more robust initialization mechanism, and significantly better support for hybrid systems.
Simulation of JMUs may still be useful, however, in some optimization applications where simulation of the model
as a DAE/JMU, is an important prerequisite for optimization by means of the collocation algorithms.

This chapter demonstrates how to initialize and simulate a model which has been compiled to a JMU. To read
about simulation of FMUs, see Chapter 5, Simulation of FMUs.

2. Initialization of JMUs

2.1. Solving DAE initialization problems

Before a model can be simulated it must be initialized, i.e. consistent initial values must be computed. To do
this, JModelica.org supplies the JMUModel member function initialize, which initializes the JMUModel. The
function is called after compiling and creating a JMUModel:

# Compile the stationary initialization model into a JMU
from pymodelica import compile_jmu
model_name = compile_jmu("My.Model", "/path/to/MyModel.mo")

# Load the model instance into Python
from pyjmi import JMUModel
init_model = JMUModel(model_name)
    
# Solve the DAE initialization system
init_result = init_model.initialize()

The JMUModel instance init_model is now initialized and is ready to be simulated.

The interactive help for the initialize method is shown by the command:

>>> help(init_model.initialize)   
    The initialization method depends on which algorithm is used, this can 
    be set with the function argument 'algorithm'. Options for the algorithm 
    are passed as option classes or as pure dicts. See 
    JMUModel.initialize_options for more details.
        
    The default algorithm for this function is IpoptInitializationAlg. 
        
    Parameters::
        
        algorithm --
            The algorithm which will be used for the initialization is 
            specified by passing the algorithm class as string or class 
            object in this argument. 'algorithm' can be any class which 
            implements the abstract class AlgorithmBase (found in 
            algorithm_drivers.py). In this way it is possible to write own 
            algorithms and use them with this function.
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            Default: 'IpoptInitializationAlg'
            
        options -- 
            The options that should be used in the algorithm. For details on 
            the options do:
            
                >> myModel = JMUModel(...)
                >> opts = myModel.initialize_options()
                >> opts?
    
            Valid values are: 
                - A dict which gives IpoptInitializationAlgOptions with 
                  default values on all options except the ones listed in 
                  the dict. Empty dict will thus give all options with 
                  default values.
                - An options object.
            Default: Empty dict
    
    Returns::
        
        Result object, subclass of algorithm_drivers.ResultBase.

Options for the available initialization algorithms can be set by first retrieving an options object using the JMUModel
method initialize_options:

>>> help(init_model.initialize_options)
    Get an instance of the initialize options class, prefilled with default 
    values. If called without argument then the options class for the 
    default initialization algorithm will be returned.
    
    Parameters::
    
        algorithm --
            The algorithm for which the options class should be fetched. 
            Possible values are: 'IpoptInitializationAlg', 'KInitSolveAlg'.
            Default: 'IpoptInitializationAlg'
            
    Returns::
    
        Options class for the algorithm specified with default values.

Having solved the initialization problem, the result of the initialization can be retrieved from the return result
object:

x = init_result['x']
y = init_result['y']

2.2. How JModelica.org creates the initialization system of equa-
tions

To find a set of consistent initial values a system of non-linear equations, called the system of initialization equa-
tions, is solved. This system is composed from the DAE equations, the initial equations, some resulting from start
attributes with the fixed attribute set to true. Start attributes with the fixed attribute set to false are treated as initial
guesses for the numerical algorithm used to solve the initialization problem

Some initialization algorithms require the system of initial equations to be well defined in the sense that the number
of variables must be equal to the number of equations. If this is not the case, the

• If the number of equations is greater than the number of variables the system is overdetermined. Such a system
may not have a solution, and will be treated as ill-defined. An exception is thrown in this case.

• If the number of equations is less than the number of variables the system is underdetermined and such a
system has infinitely many solutions. In this case, the compiler tries to balance the system by setting some fixed
attributes to true. So if the user supplies too few initial conditions, some variables with the attribute fixed set
to false may be changed to true during initialization.
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2.3. Initialization algorithms

2.3.1. Initialization using IPOPT

JModelica.org provides a method for DAE initialization that is based on IPOPT, the mathematical formulation of
the algorithm can be found in the JMI API documentation. Note that this algorithm does not rely on the causaliza-
tion procedure (in particular the BLT transformation) which is common. Instead, the DAE residual is introduced as
an equality constraint when solving an optimization problem where the squared difference between the non-fixed
start values and their corresponding variables are minimized. As a consequence, the algorithm relies on decent
start values for all variables. This approach is generally more sensitive to lacking initial guesses for start values
than are algorithms based on causalization.

The algorithm provides the options summarized in Table C.1, “Options for the collocation-based optimization
algorithm”.

Table C.1. Options for the collocation-based optimization algorithm

Option Default Description

result_file_name Empty string (default gen-
erated file name will be
used)

Specifies the name of the file where the optimization
result is written. Setting this option to an empty string
results in a default file name that is based on the name
of the optimization class.

result_format 'txt' Specifies in which format to write the result. Currently
only textual mode is supported.

write_scaled_result False Write the scaled optimization result if set to True. This
option is only applicable when automatic variable scal-
ing is enabled. Only for debugging use.

In addition to the options for the collocation algorithm, IPOPT options can also be set by modifying the dictionary
IPOPT_options contained in the collocation algorithm options object. Here, all valid IPOPT options can be spec-
ified, see the IPOPT documentation for further information. For example, setting the option max_iter:

opts['IPOPT_options']['max_iter'] = 300

makes IPOPT terminate after 300 iterations even if no optimal solution has been found.

Some statistics from IPOPT can be obtained by issuing the command:

>>> res_init.solver.init_opt_ipopt_get_statistics()

The return argument of this function can be found by using the interactive help:

>>> help(res_init.solver.init_opt_ipopt_get_statistics)
    Get statistics from the last optimization run.
    
    Returns::
    
        return_status -- 
            The return status from IPOPT.
            
        nbr_iter -- 
            The number of iterations. 
            
        objective -- 
            The final value of the objective function.
            
        total_exec_time -- 
            The execution time.

2.3.2. Initialization using KInitSolveAlg

JModelica.org also provides a method for DAE initialization based on the non-linear equation solver KINSOL
from the SUNDIALS suite. KINSOL is currently comprised in the Assimulo package, included when installing

http://www.jmodelica.org/api-docs/jmi/
http://www.coin-or.org/Ipopt/documentation/
http://www.jmodelica.org/assimulo
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JModelica.org. KINSOL is based on Newtons method for solving non-linear equations and is thus locally con-
vergent. Attempts are made to make KInitSolveAlg as robust as possible but the possibility of finding a local
minimum instead of the solution still remains. If the solution found by KInitSolveAlg is a local minimum a warn-
ing will be printed. The initial guesses passed to KINSOL are the ones supplied as start attributes in the current
Modelica model.

KInitSolveAlg also implements an improved linear solver connected to KINSOL. This linear solver implements
Tikhonov regularization to handle the problems of singular Jacobians as well as support for SuperLU, an efficient
sparse linear solver.

The options providable are summarized in Table C.2, “Options for KInitSolveAlg”.

Table C.2. Options for KInitSolveAlg

Option Default Description

use_constraints False A flag indicating whether constraints
are to be used during initialization.
Further explained in Section 2.3.2.1,
“The use of constraints”.

constraints None A numpy.array containing floats
that, when supplied, defines the con-
straints on the variables. Further ex-
plained in Section 2.3.2.1, “The use
of constraints”.

result_format 'txt' Specifies in which format to write the
result. Currently only textual mode is
supported.

result_file_name Empty string (default generated file
name will be used)

Specifies the name of the file where
the optimization result is written. Set-
ting this option to an empty string
results in a default file name that is
based on the name of the optimization
class.

KINSOL_options A dictionary with the defalt KIN-
SOL options

These are the options sent to
the KINSOL solver. These are re-
viewed in detail in Table C.3, “Op-
tions for KINSOL contained in the
KINSOL_options dictionary”.

Table C.3. Options for KINSOL contained in the KINSOL_options dictionary

Options Default Descriptions

use_jac True Flag indicating whether or not KIN-
SOL uses the jacobian supplied by
JModelica.org (True) or if KINSOL
evaluates the Jacobian through fi-
nite differences (False). Finite dif-
ferences is currently not available in
sparse mode.

sparse False Flag indicating whether the problem
should be treated as sparse (True) or
dense (False).

2.3.2.1. The use of constraints

KINSOL, and hence also KInitSolvAlg, only supports simple unilateral constraints, that is constraining a variable
to being positive or negative. If the option use_constraints is set to True, constraints are used. Which constraints
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that are used depends on whether or not the user has supplied constraints with the constraints option. If set, these
will be used otherwise constraints will be computed by reading the min and max attributes from the Modelica file.
How the constraint array is written is summarized in Table C.4, “Values allowed in the constraints array”.

Table C.4. Values allowed in the constraints array

Value Constraint

0.0 Unconstrained.

1.0 Greater than, or equal to, zero.

2.0 Greater than zero.

-1.0 Less than, or equal to, zero.

-2.0 Less than zero.

When the constraints are read from the Modelica file the value from Table C.4, “Values allowed in the con-
straints array” most fitting to the min and max values is chosen. For example a variable with min set to 3.2
and max set to 5.6 is constrained to be greater than zero. When the algorithm is finished however the result will
be compared with the min and max values from the model testing if the solution fulfills the constraints set by
the Modelica file.

2.3.2.2. Verbosity of KINSOL

There are four different levels of verbosity in KINSOL with 0 being silent and 3 being the most verbose. The
verbosity level is controlled by the FMU log level. Table C.5, “Verbosity levels in KINSOL” describes what is
output.

Table C.5. Verbosity levels in KINSOL

FMU log level Verbosity level Output

<= 2 0 No information displayed.

3 1 In each nonlinear iteration the fol-
lowing information is displayed: the
scaled Euclidean norm of the residu-
al at the current iterate, the scaled Eu-
clidian norm of the Newton step as
well as the number of function evalu-
ations performed so far.

4 2 Level 1 output as well as the Euclid-
ian and in finity norm of the scaled
residual at the current iterate

>= 5 3 Level 2 output plus additional values
used by the global strategy as well as
statistical information from the linear
solver.

3. Simulation of JMUs
Simulation of JMUs in JModelica.org is performed via the simulate method of the JMU model object. The model
object is called JMUModel and is located in the JModelica.org Python package pyjmi. JMUModel supports compiled
models from JModelica.org which have the extension .jmu.

# Import JMUModel from pyjmi and load the JMU
from pyjmi import JMUModel
my_model = JMUModel('myJMU.jmu')

The simulation method in JMUModel is by default connected to the Assimulo simulation package and thus able
to use its solvers. Continuing the short example from above, the following code will simulate the loaded JMU
using default values and options:
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res = my_model.simulate()

3.1. The simulate function

There are several parameters that can be set in the JMUModel.simulate function.

start_time The time when the solver should start the integration.

final_time The time when the solver should finish the integration.

input Input signal for the simulation. (Further explained in below.)

algorithm The algorithm that will be used for the simulation. Currently only a connection
to Assimulo is supported and connected through the algorithm AssimuloAlg.

options The options to be used in the algorithm. (Further explained in below.)

3.1.1. Input

The input defines the input trajectories to the model and should be a 2-tuple consisting of the name(s) of the input
variables and the second argument should be either a data matrix or a function. If the argument is a data matrix it
should contain a time vector as the first column and the second column should correspond to the first name in the
first argument and so forth. If instead the second argument is a function it should be defined to take the time as
input and return the number of inputs in the order defined by the first argument.

For example, consider that we have a model with an input variable u1 and that the model should be driven by a
sinus wave as input. Also we are interested in the interval 0 to 10.

import numpy as N
t = N.linspace(0.,10.,100)            # Create one hundred evenly spaced points
u = N.sin(t)                          # Create the input vector
u_traj = N.transpose(N.vstack((t,u))) # Create the data matrix and transpose 
                                      # it to the correct form

The above code has created the data matrix that we are interested in giving to the model as input, we just need
to connect the data to a specific input variable, u1:

input_object = ('u1', u_traj)

Now we are ready to simulate using the input and simulate 10 seconds.

res = model.simulate(final_time=10, input=input_object)

If we on the other hand would have two input variables, u1 and u2 the script would instead look like:

import numpy as N
t = N.linspace(0.,10.,100)                     # Create one hundred evenly spaced points
u1 = N.sin(t)                                  # Create the first input vector
u2 = N.cos(t)                                  # Create the second input vector
u_traj = N.transpose(N.vstack((t,u1,u2)))      # Create the data matrix and 
                                               # transpose it to the correct form
input_object = (['u1','u2'], u_traj)
res = model.simulate(final_time=10, input=input_object)

Note that the variables are now a List of variables.

If we were to do the same example using input functions instead, the code would look like for the single input case:

input_object = ('u1', N.sin)

and for the double input case:

def input_function(t):
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    return N.array([N.sin(t),N.cos(t)])

input_object = (['u1','u2'],input_function)

3.1.2. Options for JMUModel

The options attribute are where options to the specified algorithm are stored and are preferably used together with:

opts = JMUModel.simulate_options()

which returns the default options for the default algorithm. Information about the available options can be viewed
by typing help on the opts variable:

>>> help(opts)
   Options for simulation of a JMU model using the Assimulo simulation package.
   The Assimulo package contain both explicit solvers (CVode) for ODEs and 
   implicit solvers (IDA) for DAEs. The ODE solvers require that the problem
   is written on the form, ydot = f(t,y).
   
   ...

In Table C.6, “General options for AssimuloAlg.” the general options for the AssimuloAlg algorithm are described
while in Table C.8, “Selection of solver arguments for IDA” a selection of the different solver arguments for
the DAE solver IDA is shown. In Table C.7, “Selection of solver arguments for CVode” a selection of solver
arguments for the ODE solver CVode is shown. More information regarding the solver options can be found here,
http://www.jmodelica.org/assimulo.

Table C.6. General options for AssimuloAlg.

Option Default Description

solver 'IDA' Specifies the simulation method that
is to be used.

ncp 0 Number of communication points. If
ncp is zero, the solver will return the
internal steps taken.

initialize True If set to True, an algorithm for ini-
tializing the differential equation is
invoked, otherwise the differential
equation is assumed to have consis-
tent initial conditions.

write_scaled_result False Set this parameter to True to write the
result to file without taking scaling in-
to account. If the value of scaled is
False, then the variable scaling fac-
tors of the model are used to repro-
duced the unscaled variable values.

result_file_name Empty string (default generated file
name will be used)

Specifies the name of the file where
the simulation result is written. Set-
ting this option to an empty string
results in a default file name that is
based on the name of the model class.

Lets look at an example, consider that you want to simulate a JMU model using the solver CVode together with
changing the discretization method (discr) from BDF to Adams:

...
opts = model.simulate_options()          # Retrieve the default options
opts['solver'] = 'CVode'                 # Change the solver from IDA to CVode
opts['CVode_options']['discr'] = 'Adams' # Change from using BDF to Adams
model.simulate(options=opts)             # Pass in the options to simulate and simulate
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It should also be noted from the above example the options regarding a specific solver, say the tolerances for
CVode or IDA, should be stored in a double dictionary where the first is named after the solver concatenated with
_options:

opts['CVode_options']['atol'] = 1.0e-6 # Options specific for CVode
opts['IDA_options']['atol'] = 1.0e-6   # Options specific for IDA

For the general options, as changing the solver, they are accessed as a single dictionary:

opts['solver'] = 'CVode' # Changing the solver
opts['ncp'] = 1000       # Changing the number of communication points.

Table C.7. Selection of solver arguments for CVode

Option Default Description

discr 'BDF' The discretization method. Can be ei-
ther 'BDF' or 'Adams'

iter 'Newton' The iteration method. Can be either
'Newton' or 'FixedPoint'.

maxord 5 The maximum order used. Maximum
for 'BDF' is 5 while for the 'Adams'
method the maximum is 12

maxh Inf Maximum step-size. Positive float.

atol 1.0e-6 Absolute Tolerance. Can be an ar-
ray of floats where each value corre-
sponds to the absolute tolerance for
the corresponding variable. Can also
be a single positive float.

rtol 1.0e-6 Relative Tolerance. Positive float.

Table C.8. Selection of solver arguments for IDA

Option Default Description

maxord 5 The maximum order used. Positive
integer.

maxh Inf Maximum step-size. Positive float.

atol 1.0e-6 Absolute Tolerance. Can be an ar-
ray of floats where each value corre-
sponds to the absolute tolerance for
the corresponding variable. Can also
be a single positive float.

rtol 1.0e-6 Relative Tolerance. Positive float.

suppress_alg False Suppress the algebraic variables on
the error test. Can be either False or
True.

sensitivity False If set to True, sensitivities for the
states with respect to parameters set
to free in the model will be calculated.

3.1.3. Return argument

The return argument from the simulate method is an object derived from a common result object ResultBase in
algorithm_drivers.py with a few extra convenience methods for retrieving the result of a variable. The result
object can be accessed in the same way as a dictionary type in Python with the name of the variable as key.
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res = model.simulate()
y = res['y']           # Return the result for the variable/parameter/constant y
dery = res['der(y)']   # Return the result for the variable/parameter/constant der(y)

This can be done for all the variables, parameters and constants defined in the model and is the preferred way of
retrieving the result. There are however some more options available in the result object, see Table C.9, “Result
Object”.

Table C.9. Result Object

Option Type Description

options Property Gets the options object that was used
during the simulation.

solver Property Gets the solver that was used during
the integration.

result_file Property Gets the name of the generated result
file.

is_variable(name) Method Returns True if the given name is a
time-varying variable.

data_matrix Property Gets the raw data matrix.

is_negated(name) Method Returns True if the given name is
negated in the result matrix.

get_column(name) Method Returns the column number in the da-
ta matrix which corresponds to the
given variable.

3.2. Examples

In the next sections, it will be shown how to use the JModelica.org platform for simulation of various JMUs.

3.2.1. Simulation with inputs

This example will demonstrate how a model with two inputs with data from a MATLAB-file can be simulated.
The model to be simulated is a quadruple tank connected to two pumps, which also are the inputs to the model.
The model is depicted in Figure C.1, “A schematic picture of the quadruple tank process.” and in the code below
the corresponding Modelica code is listed.

Figure C.1. A schematic picture of the quadruple tank process.
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model QuadTank
    // Process parameters
  parameter Modelica.SIunits.Area A1=4.9e-4, A2=4.9e-4, A3=4.9e-4, A4=4.9e-4;
  parameter Modelica.SIunits.Area a1=0.03e-4, a2=0.03e-4, a3=0.03e-4, a4=0.03e-4;
  parameter Modelica.SIunits.Acceleration g=9.81;
  parameter Real k1_nmp(unit="m3^/s/V") = 0.56e-6, k2_nmp(unit="m^3/s/V") = 0.56e-6;
  parameter Real g1_nmp=0.30, g2_nmp=0.30;

   // Initial tank levels
  parameter Modelica.SIunits.Length x1_0 = 0.06270;
  parameter Modelica.SIunits.Length x2_0 = 0.06044;
  parameter Modelica.SIunits.Length x3_0 = 0.02400;
  parameter Modelica.SIunits.Length x4_0 = 0.02300;

   // Tank levels
  Modelica.SIunits.Length x1(start=x1_0,min=0.0001/*,max=0.20*/);
  Modelica.SIunits.Length x2(start=x2_0,min=0.0001/*,max=0.20*/);
  Modelica.SIunits.Length x3(start=x3_0,min=0.0001/*,max=0.20*/);
  Modelica.SIunits.Length x4(start=x4_0,min=0.0001/*,max=0.20*/);

  // Inputs
  input Modelica.SIunits.Voltage u1;
  input Modelica.SIunits.Voltage u2;

 equation
   der(x1) = -a1/A1*sqrt(2*g*x1) + a3/A1*sqrt(2*g*x3) +
                                   g1_nmp*k1_nmp/A1*u1;
   der(x2) = -a2/A2*sqrt(2*g*x2) + a4/A2*sqrt(2*g*x4) +
                                   g2_nmp*k2_nmp/A2*u2;
   der(x3) = -a3/A3*sqrt(2*g*x3) + (1-g2_nmp)*k2_nmp/A3*u2;
   der(x4) = -a4/A4*sqrt(2*g*x4) + (1-g1_nmp)*k1_nmp/A4*u1;

end QuadTank;

Let's begin with the the example, copy and paste the Modelica code and save it into QuadTank.mo and open a
Python script file. We start by importing the necessary objects:

from scipy.io.matlab.mio import loadmat
import matplotlib.pyplot as plt
import numpy as N

from pymodelica import compile_jmu
from pyjmi import JMUModel

The input data is stored in qt_par_est_data.mat which can be found in the Python/pyjmi/examples/files
catalogue in the JModelica.org install folder. Copy it into your working directory and paste the following com-
mands to load the data-file and extract the data trajectories:

data = loadmat('qt_par_est_data.mat',appendmat=False)

# Extract data series  
t_meas = data['t'][6000::100,0]-60  
u1 = data['u1_d'][6000::100,0]
u2 = data['u2_d'][6000::100,0]

The trajectories have now been extracted and needs to be stacked into a data matrix with the first column as the
time vector and the following columns the input of u1 and u2. The names of the variables needs also be connected
in the input object:

# Build input trajectory matrix for use in simulation
u_data = N.transpose(N.vstack((t_meas,u1,u2)))
input_object = (['u1','u2'], u_data)

Next, we compile and load the model:

# Compile JMU
jmu_name = compile_jmu('QuadTank', 'QuadTank.mo')



Initialization and simulation of JMUs
(Deprecated in JModelica.org 1.15)

138

# Load model
model = JMUModel(jmu_name)

Now that the model is compiled and the input has been adapted, let's give the information to the simulate method
and simulate:

# Simulate model with input trajectories
res = model.simulate(final_time=60, input=input_object)

The result is retrieved by accessing the res variable as a dictionary with the variable name as key:

x1_sim = res['x1']
x2_sim = res['x2']
x3_sim = res['x3']
x4_sim = res['x4']
u1_sim = res['u1']
u2_sim = res['u2']
t_sim  = res['time']

And then plotted with the help from matplotlib:

plt.figure(1)
plt.subplot(2,2,1)
plt.plot(t_sim,x3_sim)
plt.title('x3')
plt.subplot(2,2,2)
plt.plot(t_sim,x4_sim)
plt.title('x4')
plt.subplot(2,2,3)
plt.plot(t_sim,x1_sim)
plt.title('x1')
plt.xlabel('t[s]')
plt.subplot(2,2,4)
plt.plot(t_sim,x2_sim)
plt.title('x2')
plt.xlabel('t[s]')
plt.show()

plt.figure(2)
plt.subplot(2,1,1)
plt.plot(t_sim,u1_sim,'r')
plt.title('u1')
plt.subplot(2,1,2)
plt.plot(t_sim,u2_sim,'r')
plt.title('u2')
plt.xlabel('t[s]')
plt.show()

In Figure C.2, “Tank levels” the result of the tank levels are shown and in Figure C.3, “Input trajectories” the
input signals are shown.
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Figure C.2. Tank levels

Figure C.3. Input trajectories
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3.2.2. Simulation of a discontinuous system

The model to be simulated in this example is an electric circuit. The model is depicted in Figure C.4, “Electric
Circuit” and consists of resistances, inductors and a capacitor. The circuit is connected to a voltage source which
generates a square-wave with an amplitude of 1.0 and a frequency of 0.6 Hz. The model is also available from
the examples in the file RLC_Circuit.mo.

Figure C.4. Electric Circuit

This example assumes that the file RLC_Circuit.mo is located in the working directory.

Start by creating a Python script file and write (or copy paste) the command for importing the model object and
for compiling a model together with the library used for plotting:

# Import the function for compilation of models and the JMUModel class
from pymodelica import compile_jmu
from pyjmi import JMUModel

# Import the plotting library
import matplotlib.pyplot as plt

Next, we compile and load the model:

# Compile model
jmu_name = compile_jmu("RLC_Circuit_Square","RLC_Circuit.mo")

# Load model
rlc = JMUModel(jmu_name)

Now we are ready to simulate our model. We are interested in simulating the model from 0.0 to 20.0 seconds. The
start time is default to 0.0 so no need to change that, but the final time needs to be changed:

res = rlc.simulate(final_time=20.0)   # Simulate the model from 0.0 to 20.0 seconds

After a successful simulation the statistics are printed in the prompt and the results are stored in the variable res.
To view the result, we have to retrieve information about the variables we are interested in which is easily done
in the following way:

square_y    = res['square.y']
resistor_v  = res['resistor.v']
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inductor1_i = res['inductor1.i']
time        = res['time']

And then plotted with matplotlib,

plt.figure(1)
plt.plot(time, square_y, time, resistor_v, time, inductor1_i)    
plt.legend(('square.y','resistor.v','inductor1.i'))
plt.show()

The simulation result is shown in Figure C.5, “Simulation result”.

Figure C.5. Simulation result

3.2.3. Simulation with sensitivities

This example will show how to use JModelica.org to simulate an Optimica model and calculate sensitivities of
the state variables with respect to a number of free parameters.

The model equations is taken from the Robertson example in the Sundials suite (https://computation.llnl.gov/casc/
sundials/main.html) and the model is shown in the code below.

optimization Robertson
    parameter Real p1(free=true)=0.040;
    parameter Real p2(free=true)=1.0e4;
    parameter Real p3(free=true)=3.0e7;
    
    Real y1(start=1.0, fixed=true);
    Real y2(start=0.0, fixed=true);
    Real y3(start=0.0);
  equation
    der(y1) = -p1*y1 + p2*y2*y3;
    der(y2) =  p1*y1 - p2*y2*y3 - p3*(y2*y2);
    0.0 = y1 + y2 + y3 - 1;
end Robertson;

In the model, we have set the parameters to free which means that we want to calculate sensitivities of the states
with respect to the free parameters.

Let's begin with the the example. Copy and paste the Optimica code and save it into Robertson.mop, then open
a Python script file. We start by importing the necessary objects:

# Import the function for compilation of models and the JMUModel class
from pymodelica import compile_jmu
from pyjmi import JMUModel

# Import the plotting library
import matplotlib.pyplot as plt



Initialization and simulation of JMUs
(Deprecated in JModelica.org 1.15)

142

Next, we compile and load the model:

# Compile model
jmu_name = compile_jmu("Robertson","Robertson.mop")

# Load model
model = JMUModel(jmu_name)

Note that sensitivity computations are currently only supported for JMUModels. Now that the model is loaded,
we have to change an option to activate the sensitivity calculations and also set the absolute tolerances:

# Get and set the options
opts = model.simulate_options()                         # Get the options
opts['IDA_options']['atol'] = [1.0e-8, 1.0e-14, 1.0e-6] # Change the tolerance
opts['IDA_options']['sensitivity'] = True               # Activate the sensitivity calculations
opts['ncp'] = 400                                       # Change the number of communication points

Now simulate the model:

res = model.simulate(final_time=4, options=opts)

The sensitivity results are stored as d{variable name}/d{parameter name} in the result object. We are interested
in the following sensitivities:

dy1dp1 = res['dy1/dp1']
dy2dp1 = res['dy2/dp1']
dy3dp1 = res['dy3/dp1']
time = res['time']

To plot the trajectories using matplotlib, use the following commands:

plt.plot(time, dy1dp1, time, dy2dp1, time, dy3dp1)
plt.legend(('dy1/dp1', 'dy2/dp1', 'dy3/dp1'))
plt.show()

In Figure C.6, “Sensitivity results.” the sensitivities are plotted.

Figure C.6. Sensitivity results.
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Appendix D. Dynamic optimization of
DAEs using direct collocation with
JMUs (Deprecated in JModelica.org
1.15)
1. Dynamic optimization of DAEs using direct colloca-
tion with JMUs

The direct collocation method supported by JModelica.org can be used to solve dynamic optimization problems,
including optimal control problems and parameter optimization problems. In the collocation method, the dynamic
model variable profiles are approximated by piecewise polynomials. This method of approximating a differential
equation corresponds to a fixed step implicit Runge-Kutta scheme, where the mesh defines the length of each step.
Also, the number of collocation points in each element, or step, needs to be provided. This number corresponds to
the stage order of the Runge-Kutta scheme. The selection of mesh is analogous to the choice of step length in a one-
step algorithm for solving differential equations. Accordingly, the mesh needs to be fine-grained enough to ensure
sufficiently accurate approximation of the differential constraint. For an overview of simultaneous optimization
algorithms, see [2]. The algorithm IPOPT is used to solve the non-linear program resulting from collocation.

The collocation method implemented in JModelica.org requires that the model to be optimized does not contain
discontinuities such as if equations, when clauses or integer variables.

The mathematical formulation of the algorithm can be found in the JMI API documentation.

The collocation algorithm provides a number of options, summarized in Table D.1, “Options for the JMU and
collocation-based optimization algorithm”.

Table D.1. Options for the JMU and collocation-based optimization algorithm

Option Default Description

n_e 50 Number of elements of the finite element mesh.

n_cp 3 Number of collocation points in each element. Values
between 1 and 10 are supported.

hs Equidistant points using
default n_e

A vector containing n_e elements representing the fi-
nite element lengths. The sum of all element should
equal to 1.

blocking_factors None (not used) A vector of blocking factors. Blocking factors are
specified by a vector of integers, where each entry
in the vector corresponds to the number of elements
for which the control profile should be kept constant.
For example, the blocking factor specification [2,1,5]
means that u_0=u_1 and u_3=u_4=u_5=u_6=u_7 as-
suming that the number of elements is 8. Notice that
specification of blocking factors implies that controls
are present in only one collocation point (the first) in
each element. The number of constant control levels in
the optimization interval is equal to the length of the
blocking factor vector. In the example above, this im-
plies that there are three constant control levels. If the
sum of the entries in the blocking factor vector is not

https://projects.coin-or.org/Ipopt
http://www.jmodelica.org/api-docs/jmi/group__jmi__opt__sim__lp.html
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Option Default Description

equal to the number of elements, the vector is normal-
ized, either by truncation (if the sum of the entries is
larger than the number of element) or by increasing the
last entry of the vector. For example, if the number of
elements is 4, the normalized blocking factor vector in
the example is [2,1,1]. If the number of elements is 10,
then the normalized vector is [2,1,7].

init_traj None (i.e. not used, set
this argument to activate
initialization)

Variable trajectory data used for initializa-
tion of the optimization problem. The da-
ta is represented by an object of the type
pyjmi.common.io.ResultDymolaTextual.

result_mode 'default' Specifies the output format of the optimization re-
sult. 'default' gives the the optimization result at
the collocation points. 'element_interpolation' com-
putes the values of the variable trajectories using
the collocation interpolation polynomials. The op-
tion 'n_interpolation_points' is used to specify the
number of evaluation points within each finite ele-
ment. 'mesh_interpolation' computes the values of the
variable trajectories at points defined by the option
'result_mesh'.

n_interpolation_points 20 Number of interpolation points in each finite element
if the result reporting option result_mode is set to
'element_interpolation'.

result_mesh None A vector of time points at which the the optimization
result is computed. This option is used if result_mode
is set to 'mesh_interpolation'.

result_file_name Empty string (default gen-
erated file name will be
used)

Specifies the name of the file where the optimization
result is written. Setting this option to an empty string
results in a default file name that is based on the name
of the optimization class.

result_format 'txt' Specifies in which format to write the result. Currently
only textual mode is supported.

write_scaled_result False Write the scaled optimization result if set to true. This
option is only applicable when automatic variable scal-
ing is enabled. Only for debugging use.

In addition to the options for the collocation algorithm, IPOPT options can also be set by modifying the dictionary
IPOPT_options contained in the collocation algorithm options object. Here, all valid IPOPT options can be spec-
ified, see the IPOPT documentation for further information. For example, setting the option max_iter:

opts['IPOPT_options']['max_iter'] = 300

makes IPOPT terminate after 300 iterations even if no optimal solution has been found.

Some statistics from IPOPT can be obtained by issuing the command:

res_opt.solver.opt_coll_ipopt_get_statistics()

The return argument of this function can be found by using the interactive help:

help(res.solver.opt_coll_ipopt_get_statistics)
Get statistics from the last optimization run.
    
Returns::
    

http://www.coin-or.org/Ipopt/documentation/
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    return_status -- 
        Return status from IPOPT.
            
    nbr_iter -- 
        Number of iterations.
            
    objective -- 
       Final value of objective function.
            
    total_exec_time -- 
        Execution time.

1.1. Examples

1.1.1. Optimal control

This tutorial is based on the Hicks-Ray Continuously Stirred Tank Reactors (CSTR) system. The model was
originally presented in [1]. The system has two states, the concentration, c, and the temperature, T. The control
input to the system is the temperature, Tc, of the cooling flow in the reactor jacket. The chemical reaction in the
reactor is exothermic, and also temperature dependent; high temperature results in high reaction rate. The CSTR
dynamics is given by:

This tutorial will cover the following topics:

• How to solve a DAE initialization problem. The initialization model have equations specifying that all deriva-
tives should be identically zero, which implies that a stationary solution is obtained. Two stationary points,
corresponding to different inputs, are computed. We call the stationary points A and B respectively. Point A
corresponds to operating conditions where the reactor is cold and the reaction rate is low, whereas point B
corresponds to a higher temperature where the reaction rate is high. For more information about the DAE ini-
tialization algorithm, see the JMI API documentation.

• An optimal control problem is solved where the objective is to transfer the state of the system from stationary
point A to point B. The challenge is to ignite the reactor while avoiding uncontrolled temperature increase. It is
also demonstrated how to set parameter and variable values in a model. More information about the simultaneous
optimization algorithm can be found at JModelica.org API documentation.

• The optimization result is saved to file and then the important variables are plotted.

The Python commands in this tutorial may be copied and pasted directely into a Python shell, in some cases with
minor modifications. Alternatively, you may copy the commands into a text file, e.g., cstr.py.

Start the tutorial by creating a working directory and copy the file $JMODELICA_HOME/Python/pyjmi/exam-
ples/files/CSTR.mop to your working directory. An on-line version of CSTR.mop is also available (depending
on which browser you use, you may have to accept the site certificate by clicking through a few steps). If you
choose to create Python script file, save it to the working directory.

1.1.1.1. Compile and instantiate a model object

The functions and classes used in the tutorial script need to be imported into the Python script. This is done by
the following Python commands. Copy them and paste them either directly into your Python shell or, preferably,
into your Python script file.

import numpy as N
import matplotlib.pyplot as plt

from pymodelica import compile_jmu

https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files/CSTR.mop
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from pyjmi import JMUModel

Before we can do operations on the model, such as optimizing it, the model file must be compiled and the resulting
DLL file loaded in Python. These steps are described in more detail Section 4.

# Compile the stationary initialization model into a JMU
jmu_name = compile_jmu("CSTR.CSTR_Init","CSTR.mop", 
    compiler_options={"enable_variable_scaling":True})

# load the JMU
init_model = JMUModel(jmu_name)

Notice that automatic scaling of the model is enabled by setting the compiler option enable_variable_scaling
to true. At this point, you may open the file CSTR.mop, containing the CSTR model and the static initialization
model used in this section. Study the classes CSTR.CSTR and CSTR.CSTR_Init and make sure you understand the
models. Before proceeding, have a look at the interactive help for one of the functions you used:

help(compile_jmu)

1.1.1.2. Solve the DAE initialization problem

In the next step, we would like to specify the first operating point, A, by means of a constant input cooling tem-
perature, and then solve the initialization problem assuming that all derivatives are zero.

# Set inputs for Stationary point A
Tc_0_A = 250
init_model.set('Tc',Tc_0_A)
    
# Solve the DAE initialization system with Ipopt
init_result = init_model.initialize()

# Store stationary point A
c_0_A = init_result['c'][0]
T_0_A = init_result['T'][0]

# Print some data for stationary point A
print(' *** Stationary point A ***')
print('Tc = %f' % Tc_0_A)
print('c = %f' % c_0_A)
print('T = %f' % T_0_A)

Notice how the method set is used to set the value of the control input. The initialization algorithm is invoked by
calling the JMUModel method initialize, which returns a result object from which the initialization result can be
accessed. The initialize method relies on the algorithm IPOPT for computing the solution of the initialization
problem. The values of the states corresponding to point A can then be extracted from the result object. Look
carefully at the printouts in the Python shell to see a printout of the stationary values. Display the help text for the
initialize method and take a moment to look through it. The procedure is now repeated for operating point B:

# Set inputs for Stationary point B
Tc_0_B = 280
init_model.set('Tc',Tc_0_B)
    
# Solve the DAE initialization system with Ipopt
init_result = init_model.initialize()
# Store stationary point B
c_0_B = init_result['c'][0]
T_0_B = init_result['T'][0]

# Print some data for stationary point B
print(' *** Stationary point B ***')
print('Tc = %f' % Tc_0_B)
print('c = %f' % c_0_B)
print('T = %f' % T_0_B)

We have now computed two stationary points for the system based on constant control inputs. In the next section,
these will be used to set up an optimal control problem.
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1.1.1.3. Solving an optimal control problem

The optimal control problem we are about to solve is given by:

and is expressed in Optimica format in the class CSTR.CSTR_Opt in the CSTR.mop file above. Have a look at this
class and make sure that you understand how the optimization problem is formulated and what the objective is.

Direct collocation methods often require good initial guesses in order to ensure robust convergence. Since initial
guesses are needed for all discretized variables along the optimization interval, simulation provides a convenient
mean to generate state and derivative profiles given an initial guess for the control input(s). It is then convenient
to set up a dedicated model for computation of initial trajectories. In the model CSTR.CSTR_Init_Optimization
in the CSTR.mop file, a step input is applied to the system in order obtain an initial guess. Notice that the variable
names in the initialization model must match those in the optimal control model. Therefore, also the cost function
is included in the initialization model.

First, compile the model and set model parameters:

# Compile the optimization initialization model
jmu_name = compile_jmu("CSTR.CSTR_Init_Optimization","CSTR.mop")

# Load the model
init_sim_model = JMUModel(jmu_name)

# Set model parameters
init_sim_model.set('cstr.c_init',c_0_A)
init_sim_model.set('cstr.T_init',T_0_A)
init_sim_model.set('c_ref',c_0_B)
init_sim_model.set('T_ref',T_0_B)
init_sim_model.set('Tc_ref',Tc_0_B)

Having initialized the model parameters, we can simulate the model using the simulate function.

res = init_sim_model.simulate(start_time=0.,final_time=150.)

The method simulate first computes consistent initial conditions and then simulates the model in the interval 0
to 150 seconds. Take a moment to read the interactive help for the simulate method.

The simulation result object is returned and to retrieve the simulation data use Python dictionary access to retrieve
the variable trajectories.

# Extract variable profiles
c_init_sim=res['cstr.c']
T_init_sim=res['cstr.T']
Tc_init_sim=res['cstr.Tc']
t_init_sim = res['time']

# Plot the results
plt.figure(1)
plt.clf()
plt.hold(True)
plt.subplot(311)
plt.plot(t_init_sim,c_init_sim)
plt.grid()
plt.ylabel('Concentration')
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plt.subplot(312)
plt.plot(t_init_sim,T_init_sim)
plt.grid()
plt.ylabel('Temperature')

plt.subplot(313)
plt.plot(t_init_sim,Tc_init_sim)
plt.grid()
plt.ylabel('Cooling temperature')
plt.xlabel('time')
plt.show()

Look at the plots and try to relate the trajectories to the optimal control problem. Why is this a good initial guess?

Once the initial guess is generated, we compile the model containing the optimal control problem:

# Compile model
jmu_name = compile_jmu("CSTR.CSTR_Opt", "CSTR.mop")

# Load model
cstr = JMUModel(jmu_name)

We will now initialize the parameters of the model so that their values correspond to the optimization objective
of transferring the system state from operating point A to operating point B. Accordingly, we set the parameters
representing the initial values of the states to point A and the reference values in the cost function to point B:

# Set reference values
cstr.set('Tc_ref',Tc_0_B)
cstr.set('c_ref',c_0_B)
cstr.set('T_ref',T_0_B)

# Set initial values
cstr.set('cstr.c_init',c_0_A)
cstr.set('cstr.T_init',T_0_A)

Collocation-based optimization algorithms often require a good initial guess in order to achieve fast convergence.
Also, if the problem is non-convex, initialization is even more critical. Initial guesses can be provided in Optimica
by the initialGuess attribute, see the CSTR.mop file for an example for this. Notice that initialization in the case
of collocation-based optimization methods means initialization of all the control and state profiles as a function of
time. In some cases, it is sufficient to use constant profiles. For this purpose, the initialGuess attribute works
well. In more difficult cases, however, it may be necessary to initialize the profiles using simulation data, where
an initial guess for the input(s) has been used to generate the profiles for the dependent variables. This approach
for initializing the optimization problem is used in this tutorial.

We are now ready to solve the actual optimization problem. This is done by invoking the method optimize:

n_e = 100 # Number of elements 

# Set options
opt_opts = cstr.optimize_options()
opt_opts['n_e'] = n_e
opt_opts['init_traj'] = res.result_data

res = cstr.optimize(options=opt_opts)

In this case, we would like to increase the number of finite elements in the mesh from 50 to 100. This is done by
setting the corresponding option and provide it as an argument to the optimize method. You should see the output
of Ipopt in the Python shell as the algorithm iterates to find the optimal solution. Ipopt should terminate with a
message like 'Optimal solution found' or 'Solved to an acceptable level' in order for an optimum to be found. The
optimization result object is returned and the optimization data are stored in res.

We can now retrieve the trajectories of the variables that we intend to plot:

# Extract variable profiles
c_res=res['cstr.c']
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T_res=res['cstr.T']
Tc_res=res['cstr.Tc']
time_res = res['time']

c_ref=res['c_ref']
T_ref=res['T_ref']
Tc_ref=res['Tc_ref']

Finally, we plot the result using the functions available in matplotlib:

# Plot the result
plt.figure(2)
plt.clf()
plt.hold(True)
plt.subplot(311)
plt.plot(time_res,c_res)
plt.plot([time_res[0],time_res[-1]],[c_ref,c_ref],'--')
plt.grid()
plt.ylabel('Concentration')

plt.subplot(312)
plt.plot(time_res,T_res)
plt.plot([time_res[0],time_res[-1]],[T_ref,T_ref],'--')
plt.grid()
plt.ylabel('Temperature')

plt.subplot(313)
plt.plot(time_res,Tc_res)
plt.plot([time_res[0],time_res[-1]],[Tc_ref,Tc_ref],'--')
plt.grid()
plt.ylabel('Cooling temperature')
plt.xlabel('time')
plt.show()

Notice that parameters are returned as scalar values whereas variables are returned as vectors and that this must
be taken into account when plotting. You should now see the plot shown in Figure D.1, “Optimal profiles for the
CSTR problem.”.

Figure D.1. Optimal profiles for the CSTR problem.

Take a minute to analyze the optimal profiles and to answer the following questions:

1. Why is the concentration high in the beginning of the interval?

2. Why is the input cooling temperature high in the beginning of the interval?
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1.1.1.4. Verify optimal control solution

Solving optimal control problems by means of direct collocation implies that the differential equation is approxi-
mated by a discrete time counterpart. The accuracy of the solution is dependent on the method of collocation and
the number of elements. In order to assess the accuracy of the discretization, we may simulate the system using
a DAE solver using the optimal control profile as input. With this approach, the state profiles are computed with
high accuracy and the result may then be compared with the profiles resulting from optimization. Notice that this
procedure does not verify the optimality of the resulting optimal control profiles, but only the accuracy of the
discretization of the dynamics.

The procedure for setting up and executing this simulation is similar to above:

# Simulate to verify the optimal solution
# Set up the input trajectory
t = time_res 
u = Tc_res
u_traj = N.transpose(N.vstack((t,u)))

# Compile the Modelica model to a JMU
jmu_name = compile_jmu("CSTR.CSTR", "CSTR.mop")

# Load model
sim_model = JMUModel(jmu_name)

sim_model.set('c_init',c_0_A)
sim_model.set('T_init',T_0_A)
sim_model.set('Tc',u[0])

res = sim_model.simulate(start_time=0.,final_time=150.,
    input=('Tc',u_traj))

Finally, we load the simulated data and plot it to compare with the optimized trajectories:

# Extract variable profiles
c_sim=res['c']
T_sim=res['T']
Tc_sim=res['Tc']
time_sim = res['time']

# Plot the results
plt.figure(3)
plt.clf()
plt.hold(True)
plt.subplot(311)
plt.plot(time_res,c_res,'--')
plt.plot(time_sim,c_sim)
plt.legend(('optimized','simulated'))
plt.grid()
plt.ylabel('Concentration')

plt.subplot(312)
plt.plot(time_res,T_res,'--')
plt.plot(time_sim,T_sim)
plt.legend(('optimized','simulated'))
plt.grid()
plt.ylabel('Temperature')

plt.subplot(313)
plt.plot(time_res,Tc_res,'--')
plt.plot(time_sim,Tc_sim)
plt.legend(('optimized','simulated'))
plt.grid()
plt.ylabel('Cooling temperature')
plt.xlabel('time')
plt.show()

You should now see the plot shown in Figure D.2, “Optimal control profiles and simulated trajectories correspond-
ing to the optimal control input.”.
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Figure D.2. Optimal control profiles and simulated trajectories corresponding to the
optimal control input.

Discuss why the simulated trajectories differs from the optimized counterparts.

1.1.1.5. Exercises

After completing the tutorial you may continue to modify the optimization problem and study the results.

1. Remove the constraint on cstr.T. What is then the maximum temperature?

2. Play around with weights in the cost function. What happens if you penalize the control variable with a larger
weight? Do a parameter sweep for the control variable weight and plot the optimal profiles in the same figure.

3. Add terminal constraints ('cstr.T(finalTime)=someParameter') for the states so that they are equal to point B
at the end of the optimization interval. Now reduce the length of the optimization interval. How short can you
make the interval?

4. Try varying the number of elements in the mesh and the number of collocation points in each interval. 2-10
collocation points are supported.

1.1.1.6. References

[1] G.A. Hicks and W.H. Ray. Approximation Methods for Optimal Control Synthesis. Can. J. Chem. Eng.,
40:522–529, 1971.

[2] Bieger, L., A. Cervantes, and A. Wächter (2002): "Advances in simultaneous strategies for dynamic optimiza-
tion." Chemical Engineering Science, 57, pp. 575-593.

1.1.2. Minimum time problems

Minimum time problems are dynamic optimization problems where not only the control inputs are optimized,
but also the final time. Typically, elements of such problems include initial and terminal state constraints and an
objective function where the transition time is minimized. The following example will be used to illustrate how
minimum time problems are formulated in Optimica. We consider the optimization problem:

subject to the Van der Pol dynamics:

and the constraints:
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This problem is encoded in the following Optimica specification:

optimization VDP_Opt_Min_Time (objective = finalTime,
                               startTime = 0,
                               finalTime(free=true,min=0.2,initialGuess=1)) 

  // The states
  Real x1(start = 0,fixed=true);
  Real x2(start = 1,fixed=true);

  // The control signal
  input Real u(free=true,min=-1,max=1);

equation
  // Dynamic equations
  der(x1) = (1 - x2^2) * x1 - x2 + u;
  der(x2) = x1;

constraint
  // terminal constraints
  x1(finalTime)=0;
  x2(finalTime)=0;
end VDP_Opt_Min_Time;

Notice how the class attribute finalTime is set to be free in the optimization. The problem is solved by the
following Python script:

# Import numerical libraries
import numpy as N
import matplotlib.pyplot as plt

# Import the JModelica.org Python packages
from pymodelica import compile_jmu
from pyjmi import JMUModel

model_name = 'VDP_pack.VDP_Opt_Min_Time'

jmu_name = compile_jmu('VDP_Opt_Min_Time', 'VDP_Opt_Min_Time.mop')
vdp = JMUModel(jmu_name)
res = vdp.optimize()

# Extract variable profiles
x1=res['x1']
x2=res['x2']
u=res['u']
tf=res['finalTime']
t=res['time']

# Plot
plt.figure(1)
plt.clf()
plt.subplot(311)
plt.plot(t,x1)
plt.grid()
plt.ylabel('x1')

plt.subplot(312)
plt.plot(t,x2)
plt.grid()
plt.ylabel('x2')

plt.subplot(313)
plt.plot(t,u)
plt.grid()
plt.ylabel('u')
plt.xlabel('time')
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plt.show()

The resulting control and state profiles are shown in Figure D.3, “Minimum time profiles for the Van der Pol
Oscillator.”. Notice the difference as compared to Figure Figure 6.1, “Optimal profiles for the VDP oscillator”,
where the Van der Pol oscillator system is optimized using a quadratic objective function.

Figure D.3. Minimum time profiles for the Van der Pol Oscillator.

1.1.3. Parameter optimization

In this tutorial it will be demonstrated how to solve parameter estimation problems. We consider a quadruple tank
system depicted in Figure 6.6, “A schematic picture of the quadruple tank process.”.

Figure D.4. A schematic picture of the quadruple tank process.

The dynamics of the system are given by the differential equations:
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Where the parameter values are given in Table 6.3, “Parameters for the quadruple tank process.”.

Table D.2. Parameters for the quadruple tank process.

Parameter name Value Unit

Ai 4.9 cm2

ai 0.03 cm2

ki 0.56 cm2V-1s-1

#i 0.3 Vcm-1

The states of the model are the tank water levels x1, x2, x3, and x4. The control inputs, u1 and u2, are the flows
generated by the two pumps.

The Modelica model for the system is located in QuadTankPack.mop. Download the file to your working directory
and open it in a text editor. Locate the class QuadTankPack.QuadTank and make sure you understand the model.
In particular, notice that all model variables and parameters are expressed in SI units.

Measurement data, available in qt_par_est_data.mat, has been logged in an identification experiment. Download
also this file to your working directory.

Open a text file and name it qt_par_est.py. Then enter the imports:

from scipy.io.matlab.mio import loadmat
import matplotlib.pyplot as plt
import numpy as N

from pymodelica import compile_jmu
from pyjmi import JMUModel

into the file. Next, we enter code to open the data file, extract the measurement time series and plot the measure-
ments:

# Load measurement data from file
data = loadmat('qt_par_est_data.mat',appendmat=False)

# Extract data series
t_meas = data['t'][6000::100,0]-60
y1_meas = data['y1_f'][6000::100,0]/100
y2_meas = data['y2_f'][6000::100,0]/100
y3_meas = data['y3_d'][6000::100,0]/100
y4_meas = data['y4_d'][6000::100,0]/100
u1 = data['u1_d'][6000::100,0]
u2 = data['u2_d'][6000::100,0]    

# Plot measurements and inputs
plt.figure(1)
plt.clf()
plt.subplot(2,2,1)
plt.plot(t_meas,y3_meas)
plt.title('x3')
plt.grid()
plt.subplot(2,2,2)
plt.plot(t_meas,y4_meas)
plt.title('x4')
plt.grid()
plt.subplot(2,2,3)
plt.plot(t_meas,y1_meas)
plt.title('x1')
plt.xlabel('t[s]')
plt.grid()
plt.subplot(2,2,4)
plt.plot(t_meas,y2_meas)
plt.title('x2')
plt.xlabel('t[s]')

https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files/QuadTankPack.mop
https://svn.jmodelica.org/trunk/Python/src/pyjmi/examples/files/qt_par_est_data.mat
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plt.grid()
plt.show()

plt.figure(2)
plt.clf()
plt.subplot(2,1,1)
plt.plot(t_meas,u1)
plt.hold(True)
plt.title('u1')
plt.grid()
plt.subplot(2,1,2)
plt.plot(t_meas,u2)
plt.title('u2')
plt.xlabel('t[s]')
plt.hold(True)
plt.grid()
plt.show()

You should now see two plots showing the measurement state profiles and the control input profiles similar to
Figure 6.7, “Measured state profiles.” and Figure 6.8, “Control inputs used in the identification experiment.”.

Figure D.5. Measured state profiles.

Figure D.6. Control inputs used in the identification experiment.
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In order to evaluate the accuracy of nominal model parameter values, start by simulating the model, assuming that
the start values of the states are given by the state measurement at the start of the experiment. This assumption
can be expressed in the model:

model Sim_QuadTank
  QuadTank qt;
  input Real u1 = qt.u1;
  input Real u2 = qt.u2;
initial equation
  qt.x1 = 0.0627;
  qt.x2 = 0.06044;
  qt.x3 = 0.024;
  qt.x4 = 0.023;
end Sim_QuadTank;

Notice that initial equations have been added to the model. Before the model is simulated, a matrix containing
the input trajectories is created:

# Build input trajectory matrix for use in simulation
u = N.transpose(N.vstack((t_meas,u1,u2)))

Now, the model can be simulated:

# compile JMU
jmu_name = compile_jmu('QuadTankPack.Sim_QuadTank','QuadTankPack.mop')

# Load model
model = JMUModel(jmu_name)

# Simulate model response with nominal parameters
res = model.simulate(input=(['u1','u2'],u),start_time=0.,final_time=60)

The simulation result can now be extracted:

# Load simulation result
x1_sim = res['qt.x1']
x2_sim = res['qt.x2']
x3_sim = res['qt.x3']
x4_sim = res['qt.x4']
t_sim  = res['time']
u1_sim = res['u1']
u2_sim = res['u2']

and then plotted:

# Plot simulation result
plt.figure(1)
plt.subplot(2,2,1)
plt.plot(t_sim,x3_sim)
plt.subplot(2,2,2)
plt.plot(t_sim,x4_sim)
plt.subplot(2,2,3)
plt.plot(t_sim,x1_sim)
plt.subplot(2,2,4)
plt.plot(t_sim,x2_sim)
plt.show()

plt.figure(2)
plt.subplot(2,1,1)
plt.plot(t_sim,u1_sim,'r')
plt.subplot(2,1,2)
plt.plot(t_sim,u2_sim,'r')
plt.show()

Figure 6.9, “Simulation result for the nominal model.” shows the result of the simulation.
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Figure D.7. Simulation result for the nominal model.

Here, the simulated profiles are given by the green curves. Clearly, there is a mismatch in the response, especially
for the two lower tanks. Think about why the model does not match the data, i.e., which parameters may have
wrong values.

The next step towards solving a parameter estimation problem is to identify which parameters to tune. Typically,
parameters which are not known precisely are selected. Also, the selected parameters need of course affect the
mismatch between model response and data, when tuned. In a first attempt, we aim at decreasing the mismatch for
the two lower tanks, and therefore we select the lower tank outflow areas, a1 and a2, as parameters to optimize.
The Optimica specification for the estimation problem contained in the class QuadTankPack.QuadTank_ParEst:

optimization QuadTank_ParEst (objective=sum((y1_meas[i] - qt.x1(t_meas[i]))^2 + 
                                            (y2_meas[i] - qt.x2(t_meas[i]))^2 for i in 1:N_meas),
                                             startTime=0,finalTime=60)
    
    // Initial tank levels
  parameter Modelica.SIunits.Length x1_0 = 0.06255;
  parameter Modelica.SIunits.Length x2_0 = 0.06045;
  parameter Modelica.SIunits.Length x3_0 = 0.02395;
  parameter Modelica.SIunits.Length x4_0 = 0.02325;

  QuadTank qt(x1(fixed=true),x1_0=x1_0,
              x2(fixed=true),x2_0=x2_0,
              x3(fixed=true),x3_0=x3_0,
              x4(fixed=true),x4_0=x4_0,
              a1(free=true,initialGuess = 0.03e-4,min=0,max=0.1e-4),
              a2(free=true,initialGuess = 0.03e-4,min=0,max=0.1e-4));

  // Number of measurement points
  parameter Integer N_meas = 61;
  // Vector of measurement times
  parameter Real t_meas[N_meas] = 0:60.0/(N_meas-1):60;
  // Measurement values for x1 
  // Notice that dummy values are entered here:
  // the real measurement values will be set from Python
  parameter Real y1_meas[N_meas] = ones(N_meas);
  // Measurement values for x2  
  parameter Real y2_meas[N_meas] = ones(N_meas);
  // Input trajectory for u1 
  PRBS1 prbs1;
  // Input trajectory for u2
  PRBS2 prbs2; 
equation
  connect(prbs1.y,qt.u1);
  connect(prbs2.y,qt.u2);
end QuadTank_ParEst;
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The cost function is here given as a squared sum of the difference between the measured profiles for x1 and x2 and
the corresponding model profiles. Also the, parameters a1 and a2 are set to be free, and are given initial guesses
as well as bounds. As for the measurement data, parameter vectors are declared, but only dummy data is provided
in the model - the actual data values will be set from the Python script. Also, the input profiles are connected to
signal generators that outputs the same input profiles as those used in the experiment. Take some time to look at
QuadTankPack.mop and locate the classes used above.

Before the optimization problem can be solved, the Optimica specification needs to be compiled:

# Compile parameter optimization model
jmu_name = compile_jmu("QuadTankPack.QuadTank_ParEst","QuadTankPack.mop")

# Load the model
qt_par_est = JMUModel(jmu_name)

Next, we load the measurement data into the model:

# Number of measurement points
N_meas = N.size(u1,0)

# Set measurement data into model
for i in range(0,N_meas):
    qt_par_est.set("t_meas["+`i+1`+"]",t_meas[i])
    qt_par_est.set("y1_meas["+`i+1`+"]",y1_meas[i])
    qt_par_est.set("y2_meas["+`i+1`+"]",y2_meas[i])

We are now ready to solve the optimization problem:

n_e = 100 # Numer of element in collocation algorithm

# Get an options object for the optimization algorithm
opt_opts = qt_par_est.optimize_options()
# Set the number of collocation points
opt_opts['n_e'] = n_e

# Solve parameter optimization problem
res = qt_par_est.optimize(options=opt_opts)

Now, lets extract the optimal values of the parameters a1 and a2 and print them to the console:

# Extract optimal values of parameters
a1_opt = res.final("qt.a1")
a2_opt = res.final("qt.a2")

# Print optimal parameter values
print('a1: ' + str(a1_opt*1e4) + 'cm^2')
print('a2: ' + str(a2_opt*1e4) + 'cm^2')

You should get an output similar to:

a1: 0.0266cm^2
a2: 0.0272cm^2

The estimated values are slightly smaller than the nominal values - think about why this may be the case. Also
note that the estimated values do not necessarily correspond to the physically true values. Rather, the parameter
values are adjusted to compensate for all kinds of modeling errors in order to minimize the mismatch between
model response and measurement data.

Next we plot the optimized profiles:

# Load state profiles
x1_opt = res["qt.x1"]
x2_opt = res["qt.x2"]
x3_opt = res["qt.x3"]
x4_opt = res["qt.x4"]
u1_opt = res["qt.u1"]
u2_opt = res["qt.u2"]
t_opt  = res["time"]
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# Plot
plt.figure(1)
plt.subplot(2,2,1)
plt.plot(t_opt,x3_opt,'k')
plt.subplot(2,2,2)
plt.plot(t_opt,x4_opt,'k')
plt.subplot(2,2,3)
plt.plot(t_opt,x1_opt,'k')
plt.subplot(2,2,4)
plt.plot(t_opt,x2_opt,'k')
plt.show()

You will see the plot shown in Figure 6.10, “State profiles corresponding to estimated values of a1 and a2.”.

Figure D.8. State profiles corresponding to estimated values of a1 and a2.

The profiles corresponding to the estimated values of a1 and a2 are shown in black curves. As can be seen, the
match between the model response and the measurement data has been significantly increased. Is the behavior of
the model consistent with the estimated parameter values?

Never the less, There is still a mismatch for the upper tanks, especially for tank 4. In order to improve the
match, a second estimation problem may be formulated, where the parameters a1, a2, a3, a4 are free optimization
variables, and where the squared errors of all four tank levels are penalized. Take a minute to locate the class
QuadTankPack.QuadTank_ParEst2 and make sure that you understand the model. Solve the optimization prob-
lem by typing the Python code:

# Compile second parameter estimation model
jmu_name = compile_jmu("QuadTankPack.QuadTank_ParEst2", "QuadTankPack.mop")

# Load model
qt_par_est2 = JMUModel(jmu_name)

# Number of measurement points
N_meas = N.size(u1,0)

# Set measurement data into model
for i in range(0,N_meas):
    qt_par_est2.set("t_meas["+`i+1`+"]",t_meas[i])
    qt_par_est2.set("y1_meas["+`i+1`+"]",y1_meas[i])
    qt_par_est2.set("y2_meas["+`i+1`+"]",y2_meas[i])
    qt_par_est2.set("y3_meas["+`i+1`+"]",y3_meas[i])
    qt_par_est2.set("y4_meas["+`i+1`+"]",y4_meas[i])

# Solve parameter estimation problem
res_opt2 = qt_par_est2.optimize(options=opt_opts)
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Next, we print the optimal parameter values:

# Get optimal parameter values
a1_opt2 = res_opt2.final("qt.a1")
a2_opt2 = res_opt2.final("qt.a2")
a3_opt2 = res_opt2.final("qt.a3")
a4_opt2 = res_opt2.final("qt.a4")

# Print optimal parameter values 
print('a1:' + str(a1_opt2*1e4) + 'cm^2')
print('a2:' + str(a2_opt2*1e4) + 'cm^2')
print('a3:' + str(a3_opt2*1e4) + 'cm^2')
print('a4:' + str(a4_opt2*1e4) + 'cm^2')

The output in the console should be similar to:

a1:0.0266cm^2
a2:0.0271cm^2
a3:0.0301cm^2
a4:0.0293cm^2

Think about the result - can you explain why the estimated value of a4 is slightly smaller than the nominal value?
Finally, plot the state profiles corresponding to the estimated parameters:

# Extract state and input profiles
x1_opt2 = res_opt2["qt.x1"]
x2_opt2 = res_opt2["qt.x2"]
x3_opt2 = res_opt2["qt.x3"]
x4_opt2 = res_opt2["qt.x4"]
u1_opt2 = res_opt2["qt.u1"]
u2_opt2 = res_opt2["qt.u2"]
t_opt2  = res_opt2["time"]

# Plot
plt.figure(1)
plt.subplot(2,2,1)
plt.plot(t_opt2,x3_opt2,'r')
plt.subplot(2,2,2)
plt.plot(t_opt2,x4_opt2,'r')
plt.subplot(2,2,3)
plt.plot(t_opt2,x1_opt2,'r')
plt.subplot(2,2,4)
plt.plot(t_opt2,x2_opt2,'r')
plt.show()

The resulting plot is shown in Figure D.9, “State profiles corresponding to estimated values of a1, a2, a3 and a4.”.

Figure D.9. State profiles corresponding to estimated values of a1, a2, a3 and a4.
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The red curves represent the case where a1, a2, a3 and a4 has been estimated.

Take a moment to think about the results. Are there other parameters that could have been selected for estimation?

Having computed the parameter values that fits the data, we proceed to compute the standard deviations for the
parameter estimates. This information is valuable when judging how accurate the estimates are. For an introduction
to statistical inference in parameter estimation problems, see [Eng2001].

The covariance matrix of the estimated parameter vector is given by the expression:

where J is the Jacobian of the error residual and σ is the estimated measurement noise variance. In order to compute
the residual Jacobian, the sensitivity equations needs to be computed.

The model QuadTankPack.QuadTank_Sens2 is used for the sensitivity simulation. Notice that the free attribute
is used to mark the parameters for which sensitivities should be computed:

optimization QuadTank_Sens2 
    
   extends QuadTank (x1(fixed=true),x1_0 = 0.0627,
                     x2(fixed=true),x2_0 = 0.06044,
                     x3(fixed=true),x3_0 = 0.024,
                     x4(fixed=true),x4_0 = 0.023,
                     a1(free=true),
                     a2(free=true),
                     a3(free=true),
                     a4(free=true));

end QuadTank_Sens2;

In a first step to simulating the sensitivity equations for the model, we compile the model and set the optimal
parameter values:

# compile JMU
jmu_name = compile_jmu('QuadTankPack.QuadTank_Sens2',
                       'QuadTankPack.mop')

# Load model
model = JMUModel(jmu_name)

model.set('a1',a1_opt2)
model.set('a2',a2_opt2)
model.set('a3',a3_opt2)
model.set('a4',a4_opt2)

Next, we set the IDA_option sensitivity to true, and simulate the model:

# Get an options object
sens_opts = model.simulate_options()

# Enable sensitivity computations
sens_opts['IDA_options']['sensitivity'] = True

# Simulate sensitivity equations
sens_res = model.simulate(input=(['u1','u2'],u),start_time=0.,
                          final_time=60, options = sens_opts)

Using the results of sensitivity simulation, the Jacobian and the residual error vector can be created:

# Get result trajectories
x1_sens = sens_res['x1']
x2_sens = sens_res['x2']
x3_sens = sens_res['x3']
x4_sens = sens_res['x4']

dx1da1 = sens_res['dx1/da1']
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dx1da2 = sens_res['dx1/da2']
dx1da3 = sens_res['dx1/da3']
dx1da4 = sens_res['dx1/da4']

dx2da1 = sens_res['dx2/da1']
dx2da2 = sens_res['dx2/da2']
dx2da3 = sens_res['dx2/da3']
dx2da4 = sens_res['dx2/da4']

dx3da1 = sens_res['dx3/da1']
dx3da2 = sens_res['dx3/da2']
dx3da3 = sens_res['dx3/da3']
dx3da4 = sens_res['dx3/da4']

dx4da1 = sens_res['dx4/da1']
dx4da2 = sens_res['dx4/da2']
dx4da3 = sens_res['dx4/da3']
dx4da4 = sens_res['dx4/da4']
t_sens = sens_res['time']

# Create a trajectory object for interpolation
traj=TrajectoryLinearInterpolation(t_sens,
    N.transpose(N.vstack((x1_sens,x2_sens,x3_sens,x4_sens,
                          dx1da1,dx1da2,dx1da3,dx1da4,
                          dx2da1,dx2da2,dx2da3,dx2da4,
                          dx3da1,dx3da2,dx3da3,dx3da4,
                          dx4da1,dx4da2,dx4da3,dx4da4))))

# Create Jacobian
jac = N.zeros((61*4,4))

# Error vector
err = N.zeros(61*4)

# Extract Jacobian and residual error information
i = 0
for t_p in t_meas:
    vals = traj.eval(t_p)
    for j in range(4):
        for k in range(4):
            jac[i+j,k] = vals[0,4*j+k+4]
        err[i] = vals[0,0] - y1_meas[i/4]
        err[i+1] = vals[0,1] - y2_meas[i/4]
        err[i+2] = vals[0,2] - y3_meas[i/4]
        err[i+3] = vals[0,3] - y4_meas[i/4]
    i = i + 4

Notice the convention for how the sensitivity variables are named.

Finally, we compute and print the standard deviations for the estimated parameters:

# Compute estimated variance of measurement noice    
v_err = N.sum(err**2)/(61*4-2)

# Compute J^T*J
A = N.dot(N.transpose(jac),jac)

# Compute parameter covariance matrix
P = v_err*N.linalg.inv(A)

# Compute standard deviations for parameters
sigma_a1 = N.sqrt(P[0,0])
sigma_a2 = N.sqrt(P[1,1])
sigma_a3 = N.sqrt(P[2,2])
sigma_a4 = N.sqrt(P[3,3])

print "a1: " + str(sens_res.final('a1')) + ", standard deviation: " + str(sigma_a1)
print "a2: " + str(sens_res.final('a2')) + ", standard deviation: " + str(sigma_a2)
print "a3: " + str(sens_res.final('a3')) + ", standard deviation: " + str(sigma_a3)
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print "a4: " + str(sens_res.final('a4')) + ", standard deviation: " + str(sigma_a4)

You should now see the standard deviations for the estimated parameters printed.
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